- Convert model
- Compile the lib
- Edit the config_infer_primary_ppyoloe file
- Edit the deepstream_app_config file
- Testing the model
https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/docs/tutorials/INSTALL.md
NOTE: It is recommended to use Python virtualenv.
Copy the gen_wts_ppyoloe.py
file from DeepStream-Yolo/utils
directory to the PaddleDetection
folder.
Download the pdparams
file from PP-YOLOE releases (example for PP-YOLOE-s)
wget https://paddledet.bj.bcebos.com/models/ppyoloe_crn_s_400e_coco.pdparams
NOTE: You can use your custom model, but it is important to keep the YOLO model reference (ppyoloe_
) in you cfg
and weights
/wts
filenames to generate the engine correctly.
Generate the cfg
and wts
files (example for PP-YOLOE-s)
python3 gen_wts_ppyoloe.py -w ppyoloe_crn_s_400e_coco.pdparams -c configs/ppyoloe/ppyoloe_crn_s_400e_coco.yml
Copy the generated cfg
and wts
files to the DeepStream-Yolo
folder.
Open the DeepStream-Yolo
folder and compile the lib
-
DeepStream 6.1 on x86 platform
CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo
-
DeepStream 6.0.1 / 6.0 on x86 platform
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
-
DeepStream 6.1 on Jetson platform
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
-
DeepStream 6.0.1 / 6.0 on Jetson platform
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
Edit the config_infer_primary_ppyoloe.txt
file according to your model (example for PP-YOLOE-s)
[property]
...
custom-network-config=ppyoloe_crn_s_400e_coco.cfg
model-file=ppyoloe_crn_s_400e_coco.wts
...
NOTE: The PP-YOLOE uses normalization on the image preprocess. It is important to change the net-scale-factor
and offsets
according to the trained values.
Default: mean = 0.485, 0.456, 0.406
and std = 0.229, 0.224, 0.225
net-scale-factor=0.0173520735727919486
offsets=123.675;116.28;103.53
...
[primary-gie]
...
config-file=config_infer_primary_ppyoloe.txt
deepstream-app -c deepstream_app_config.txt