forked from triton-inference-server/client
-
Notifications
You must be signed in to change notification settings - Fork 0
/
simple_http_cudashm_client.py
executable file
·195 lines (170 loc) · 7.22 KB
/
simple_http_cudashm_client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#!/usr/bin/env python
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import argparse
import sys
from builtins import range
import numpy as np
import tritonclient.http as httpclient
import tritonclient.utils.cuda_shared_memory as cudashm
from tritonclient import utils
FLAGS = None
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-v",
"--verbose",
action="store_true",
required=False,
default=False,
help="Enable verbose output",
)
parser.add_argument(
"-u",
"--url",
type=str,
required=False,
default="localhost:8000",
help="Inference server URL. Default is localhost:8000.",
)
FLAGS = parser.parse_args()
try:
triton_client = httpclient.InferenceServerClient(
url=FLAGS.url, verbose=FLAGS.verbose
)
except Exception as e:
print("channel creation failed: " + str(e))
sys.exit(1)
# To make sure no shared memory regions are registered with the
# server.
triton_client.unregister_system_shared_memory()
triton_client.unregister_cuda_shared_memory()
# We use a simple model that takes 2 input tensors of 16 integers
# each and returns 2 output tensors of 16 integers each. One
# output tensor is the element-wise sum of the inputs and one
# output is the element-wise difference.
model_name = "simple"
model_version = ""
# Create the data for the two input tensors. Initialize the first
# to unique integers and the second to all ones.
input0_data = np.arange(start=0, stop=16, dtype=np.int32)
input1_data = np.ones(shape=16, dtype=np.int32)
input_byte_size = input0_data.size * input0_data.itemsize
output_byte_size = input_byte_size
# Create Output0 and Output1 in Shared Memory and store shared memory handles
shm_op0_handle = cudashm.create_shared_memory_region(
"output0_data", output_byte_size, 0
)
shm_op1_handle = cudashm.create_shared_memory_region(
"output1_data", output_byte_size, 0
)
# Register Output0 and Output1 shared memory with Triton Server
triton_client.register_cuda_shared_memory(
"output0_data", cudashm.get_raw_handle(shm_op0_handle), 0, output_byte_size
)
triton_client.register_cuda_shared_memory(
"output1_data", cudashm.get_raw_handle(shm_op1_handle), 0, output_byte_size
)
# Create Input0 and Input1 in Shared Memory and store shared memory handles
shm_ip0_handle = cudashm.create_shared_memory_region(
"input0_data", input_byte_size, 0
)
shm_ip1_handle = cudashm.create_shared_memory_region(
"input1_data", input_byte_size, 0
)
# Put input data values into shared memory
cudashm.set_shared_memory_region(shm_ip0_handle, [input0_data])
cudashm.set_shared_memory_region(shm_ip1_handle, [input1_data])
# Register Input0 and Input1 shared memory with Triton Server
triton_client.register_cuda_shared_memory(
"input0_data", cudashm.get_raw_handle(shm_ip0_handle), 0, input_byte_size
)
triton_client.register_cuda_shared_memory(
"input1_data", cudashm.get_raw_handle(shm_ip1_handle), 0, input_byte_size
)
# Set the parameters to use data from shared memory
inputs = []
inputs.append(httpclient.InferInput("INPUT0", [1, 16], "INT32"))
inputs[-1].set_shared_memory("input0_data", input_byte_size)
inputs.append(httpclient.InferInput("INPUT1", [1, 16], "INT32"))
inputs[-1].set_shared_memory("input1_data", input_byte_size)
outputs = []
outputs.append(httpclient.InferRequestedOutput("OUTPUT0", binary_data=True))
outputs[-1].set_shared_memory("output0_data", output_byte_size)
outputs.append(httpclient.InferRequestedOutput("OUTPUT1", binary_data=True))
outputs[-1].set_shared_memory("output1_data", output_byte_size)
results = triton_client.infer(model_name=model_name, inputs=inputs, outputs=outputs)
# Read results from the shared memory.
output0 = results.get_output("OUTPUT0")
if output0 is not None:
output0_data = cudashm.get_contents_as_numpy(
shm_op0_handle,
utils.triton_to_np_dtype(output0["datatype"]),
output0["shape"],
)
else:
print("OUTPUT0 is missing in the response.")
sys.exit(1)
output1 = results.get_output("OUTPUT1")
if output1 is not None:
output1_data = cudashm.get_contents_as_numpy(
shm_op1_handle,
utils.triton_to_np_dtype(output1["datatype"]),
output1["shape"],
)
else:
print("OUTPUT1 is missing in the response.")
sys.exit(1)
for i in range(16):
print(
str(input0_data[i])
+ " + "
+ str(input1_data[i])
+ " = "
+ str(output0_data[0][i])
)
print(
str(input0_data[i])
+ " - "
+ str(input1_data[i])
+ " = "
+ str(output1_data[0][i])
)
if (input0_data[i] + input1_data[i]) != output0_data[0][i]:
print("cudashm infer error: incorrect sum")
sys.exit(1)
if (input0_data[i] - input1_data[i]) != output1_data[0][i]:
print("cudashm infer error: incorrect difference")
sys.exit(1)
print(triton_client.get_cuda_shared_memory_status())
triton_client.unregister_cuda_shared_memory()
assert len(cudashm.allocated_shared_memory_regions()) == 4
cudashm.destroy_shared_memory_region(shm_ip0_handle)
cudashm.destroy_shared_memory_region(shm_ip1_handle)
cudashm.destroy_shared_memory_region(shm_op0_handle)
cudashm.destroy_shared_memory_region(shm_op1_handle)
assert len(cudashm.allocated_shared_memory_regions()) == 0
print("PASS: cuda shared memory")