-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_VGG_multi.py
345 lines (283 loc) · 14.6 KB
/
train_VGG_multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
#coding:utf-8
'''Train datasets with PyTorch.'''
from __future__ import print_function
import numpy
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
from tensorboardX import SummaryWriter
import os
import argparse
from PIL import Image
import random
#from torch.models import *
#from torch.utils import progress_bar
from torch.autograd import Variable
from torch.utils.data import Dataset, DataLoader
from nets import vgg19_bn_fx as VGG
#from nets import vgg19_bn as VGG
#from resnet import resnet50 as VGG
from nets import Encoder
from dataset_nature_multi import config_VGG, SingleDataset_VGG, SingleDataset_GAN
from dataset_nature_multi import config as config_ele
class Classify(object):
def __init__(self,args,config=config_VGG):
self.args = args
self.config = config_VGG
self.attributes = args.attributes
self.n_attributes = len(self.attributes)
image_f = open("dataset/multipie/images.list")
if not os.path.isdir(self.config.checkpoint):
os.mkdir(self.config.checkpoint)
self.f_acc = open(self.config.checkpoint + '/acc.txt', 'w')
# deal with the dataloader
self.im_names = []
self.labels = []
self.test_im_names = []
self.test_labels = []
for line in image_f:
pic_name = line.strip().split()[0]
if pic_name[:4] == 'trai': #train
self.im_names.append(line.strip().split()[0])#[:-4]+'.png')
self.labels.append(int(line.strip().split()[1]))
else:
self.test_im_names.append(line.strip().split()[0])#[:-4]+'.png')
self.test_labels.append(int(line.strip().split()[1]))
self.dataset_train_raw = SingleDataset_VGG(self.im_names, self.labels, self.config, 'train', 'raw')
self.dataset_test = SingleDataset_VGG(self.test_im_names, self.test_labels, self.config, 'test','raw') # test 图片只用真实图片??
self.train_loader_raw = DataLoader(dataset = self.dataset_train_raw, batch_size = self.config.ncwh[0], shuffle = self.config.shuffle, num_workers = self.config.num_workers)
self.test_loader = DataLoader(dataset = self.dataset_test, batch_size = self.config.ncwh[0], shuffle = self.config.shuffle, num_workers = self.config.num_workers)
self.gpu = args.gpu
os.environ["CUDA_VISIBLE_DEVICES"] = self.gpu[0]
self.mode = args.mode
self.gan_raw = self.config.gan_raw
self.resume = args.resume
self.resume_dir = args.resume_dir
self.use_cuda = torch.cuda.is_available()
self.checkpoint = self.config.checkpoint
if self.resume:
print('==> Resuming from checkpoint..')
if os.path.isdir(self.resume_dir):
print('Checkpoint directory found!')
else:
print('no Checkpoint directory found!')
checkpoint = torch.load(self.resume_dir+'/max_ckpt.t7')
self.net = VGG(6,pretrained=False)
self.net.load_state_dict(checkpoint['net'])
self.best_acc = float(checkpoint['acc'])
print("Success resume the max checkpoing")
print("Bese acc is:",self.best_acc)
self.start_iter = checkpoint['step']
else:
print('==> Building model..')
self.net = VGG(6,pretrained=True)
if self.mode == 'train':
self.best_acc = 0. # best test accuracy
self.start_iter = 0
if self.use_cuda:
with torch.cuda.device(0):
# move param and buffer to GPU
self.net.cuda()
# parallel use GPU
if len(self.args.gpu)>1 :
self.net = torch.nn.DataParallel(self.net, device_ids=range(len(self.gpu)))
# speed up slightly
cudnn.benchmark = True
self.criterion = nn.CrossEntropyLoss(size_average=True)
self.optimizer = torch.optim.SGD(self.net.parameters(), lr=self.config.lr, momentum=0.9, weight_decay=5e-4)
self.lr_scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer, step_size=self.config.step_size, gamma=self.config.gamma)
self.sum_step = 0
self.writer = SummaryWriter(self.config.log_dir)
def tensor2var(self, tensors, volatile=False):
if not hasattr(tensors, '__iter__'): tensors = [tensors]
out = []
for tensor in tensors:
if len(self.gpu):
tensor = tensor.cuda(0)
out.append(tensor)
if len(out) == 1:
return out[0]
else:
return out
def get_attr_chs(self, encodings, attribute_id):
num_chs = encodings.size(1)
per_chs = float(num_chs) / self.n_attributes
start = int(numpy.rint(per_chs * attribute_id))
end = int(numpy.rint(per_chs * (attribute_id + 1)))
# return encodings[:, start:end]
return encodings.narrow(1, start, end-start)
def img_denorm(self, img, scale=255):
return (img + 1) * scale / 2.
def train(self, epoch):
# switch to train mode
self.net.train()
gan_num = 0 # train gan data times (every 6)
self.gan_im_names = []
self.gan_labels = []
# load new gan-pic every time
f_gan = open("dataset/multipie/images_gan_nature.list")
if self.args.ablation: # ablation study
ablation_num = 2
f_gan_lines = f_gan.readlines()
random.shuffle(f_gan_lines)
for item in f_gan_lines[:int(ablation_num*36744/6)]:
self.gan_im_names.append(item.strip().split()[0])
label = item.strip().split()[1]
self.gan_labels.append(int(label))
else:
for item in f_gan:
self.gan_im_names.append(item.strip().split()[0])
label = item.strip().split()[1]
self.gan_labels.append(int(label))
self.dataset_train_gan = SingleDataset_VGG(self.gan_im_names, self.gan_labels, self.config, 'train', 'gan')
self.train_loader_gan = DataLoader(dataset=self.dataset_train_gan, batch_size=self.config.ncwh[0],shuffle=self.config.shuffle, num_workers=self.config.num_workers)
# load temp Encoder
self.Enc = Encoder()
ckpt_file_enc = os.path.join(config_ele.model_dir, 'Enc_iter_temp.pth')
print(ckpt_file_enc)
assert os.path.exists(ckpt_file_enc)
self.Enc.load_state_dict(torch.load(ckpt_file_enc), strict=False)
self.Enc.eval()
self.Enc.cuda()
print("Load Encoder successful!")
if 1==1:
for train_step, (inputs_, _ , targets_) in enumerate(self.train_loader_raw):
if self.args.multi_add_gan:
if epoch < 2.5*self.config.train_vgg_times:
self.train_loader_add = self.train_loader_raw
self.gan_add = 1
if epoch >=2.5*self.config.train_vgg_times and epoch < 5*self.config.train_vgg_times:
self.train_loader_add = self.train_loader_gan
self.gan_add = self.config.gan_raw/3
if epoch >= 5*self.config.train_vgg_times and epoch < 7.5*self.config.train_vgg_times:
self.train_loader_add = self.train_loader_gan
self.gan_add = self.config.gan_raw/2
if epoch >= 7.5*self.config.train_vgg_times:
self.train_loader_add = self.train_loader_gan
self.gan_add = self.config.gan_raw
else:
self.train_loader_add = self.train_loader_gan
self.gan_add = self.config.gan_raw
self.inputs = inputs_ #Variable(inputs_)
self.targets = targets_ #Variable(torch.Tensor(targets_))
if self.use_cuda:
self.inputs, self.targets = self.inputs.cuda(), self.targets.cuda()
self.lr_scheduler.step()
self.optimizer.zero_grad()
fx = self.Enc(self.inputs,return_skip=False)
fx = torch.cat([fx, fx], 1)
outputs = self.net(self.inputs, fx)
loss = self.criterion(outputs, self.targets.long())
loss.backward()
self.optimizer.step()
#----eval----
self.step = train_step + self.gan_add*gan_num
train_loss = loss.item()
_, predicted = torch.max(outputs.data, 1)
total = self.targets.size(0)
correct = predicted.eq(self.targets.long().data).cpu().sum()
# TENSORBOARD
self.sum_step = self.sum_step + 1
self.writer.add_scalar("train-loss", train_loss, self.sum_step)
self.writer.add_scalar("train-Acc", 100. * float(correct) / float(total), self.sum_step)
self.writer.add_scalar("lr*1000", 1000 * self.lr_scheduler.get_lr()[0], self.sum_step)
if self.step % 50 == 0:
print(' Epoch:%d/%d Step: %d/%d Sum_step:%d Lr: %f Loss: %.3f | Acc: %.3f%% (%d/%d) GAN:%d --raw'% \
(epoch, 20, self.step, (self.gan_add+1)*(int(len(self.dataset_train_raw)/self.config.ncwh[0])+1),self.sum_step,\
self.optimizer.param_groups[0]['lr'], train_loss, 100.*float(correct)/float(total), correct, total,self.gan_add))
if self.step % 200 == 0:
self.test()
# ============training the gan data=============
# shuffle every time
for gan_step, (inputs_gan_, fx_gan, targets_gan_) in enumerate(self.train_loader_add):
self.inputs_gan = inputs_gan_
self.fx_gan = fx_gan
self.targets_gan = targets_gan_
if self.use_cuda:
self.inputs_gan, self.fx_gan, self.targets_gan = self.inputs_gan.cuda(), self.fx_gan.cuda(), self.targets_gan.cuda()
self.lr_scheduler.step()
self.optimizer.zero_grad()
if self.train_loader_add == self.train_loader_raw:
self.fx_gan = self.Enc(self.inputs_gan, return_skip=False)
self.fx_gan = torch.cat([self.fx_gan, self.fx_gan], 1)
outputs_gan = self.net(self.inputs_gan, self.fx_gan)
#outputs_gan = self.net(self.inputs_gan)
else:
outputs_gan = self.net(self.inputs_gan, self.fx_gan)
#outputs_gan = self.net(self.inputs_gan)
loss = self.criterion(outputs_gan, self.targets_gan.long())
loss.backward()
self.optimizer.step()
# ----eval----
self.step = self.step + 1
train_loss = loss.item()
_, predicted_gan = torch.max(outputs_gan.data, 1)
total = self.targets_gan.size(0)
correct = predicted_gan.eq(self.targets_gan.long().data).cpu().sum()
# TENSORBOARD
self.sum_step = self.sum_step + 1
self.writer.add_scalar("train-loss", train_loss, self.sum_step)
self.writer.add_scalar("train-Acc", 100. * float(correct) / float(total), self.sum_step)
self.writer.add_scalar("lr*1000", 1000 * self.lr_scheduler.get_lr()[0], self.sum_step)
if self.step % 50 == 0:
print(' Epoch:%d/%d Step: %d/%d Sum_step: %d Lr:%f Loss: %.3f | Acc: %.3f%% (%d/%d) GAN:%d --gan' % (
epoch, 20, self.step,
(self.gan_add + 1) * (int(len(self.dataset_train_raw) / self.config.ncwh[0]) + 1),self.sum_step,
self.optimizer.param_groups[0]['lr'], train_loss, 100. * float(correct) / float(total), correct,
total, self.gan_add))
if self.step % 200 == 0:
self.test()
if (gan_step + 1) % self.gan_add == 0:
# have a look at input
#img = numpy.transpose(self.img_denorm(self.inputs_gan.data.cpu().numpy()), (0, 2, 3, 1)).astype(numpy.uint8)[0]
#Image.fromarray(img).save("./input_sample/" + str(epoch) + '.jpg')
break
gan_num += 1
print('VGG: Finished Training for ',epoch,'th Epoch!')
#self.test()
if epoch == 4:
torch.save(self.Enc.state_dict(), self.checkpoint+'/Enc_base.pth')
torch.save(self.net.state_dict(), self.checkpoint+'/vgg_base.pth')
print("********* save base model ***********")
print("--------------------------------------")
def test(self):
self.net.eval()
test_loss = 0
correct = 0
total = 0
for test_iter,(inputs_,_,targets_) in enumerate(self.test_loader):
inputs = Variable(inputs_)
targets_ = list(targets_)
targets = Variable(torch.Tensor(targets_))
if self.use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
fx_test = self.Enc(inputs, return_skip=False)
fx_test = torch.cat([fx_test, fx_test],1)
outputs = self.net(inputs, fx_test)
#outputs = self.net(inputs)
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.long().data).cpu().sum()
# Save checkpoint.
acc = 100.*float(correct)/float(total)
self.f_acc.write(str(acc)+'\n')
self.f_acc.flush()
if acc > self.best_acc:
print('Saving..')
state = {
'net': self.net.state_dict(),
'acc': acc,
'step': self.step,
}
if not os.path.isdir(self.checkpoint):
os.mkdir(self.checkpoint)
torch.save(state, self.checkpoint+'/max_ckpt.t7')
self.best_acc = acc
torch.save(self.Enc.state_dict(), self.checkpoint+'/Enc_max.pth')
print("save max Encoder")
self.writer.add_scalar("Test-Acc", acc, self.sum_step)
print((' Test Loss: %.3f | Acc: %.3f%% (%d/%d) | max_Acc: %.3f%%' % (test_loss/len(self.dataset_test), 100.*float(correct)/float(total), correct, total, self.best_acc)))