-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
409 lines (357 loc) · 13.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
import argparse
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint, TQDMProgressBar
from pytorch_lightning.loggers import TensorBoardLogger
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModel, AutoTokenizer
from transformers.optimization import Adafactor, get_linear_schedule_with_warmup
from losses import MultipleNegativesRankingLoss, TripletLoss
from utils.datasets import get_collate_fn, get_sampler, get_train_dev_datasets
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[
0
] # First element of model_output contains all token embeddings
input_mask_expanded = (
attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
)
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
input_mask_expanded.sum(1), min=1e-9
)
class Specter(pl.LightningModule):
def __init__(self, init_args):
super().__init__()
self.save_hyperparameters(init_args)
print(self.hparams)
self.model = AutoModel.from_pretrained("nreimers/MiniLM-L6-H384-uncased")
self.tokenizer = AutoTokenizer.from_pretrained(
"nreimers/MiniLM-L6-H384-uncased"
)
self.tokenizer.model_max_length = self.model.config.max_position_embeddings
self.hparams.seqlen = self.model.config.max_position_embeddings
try:
if self.hparams.loss == "triplet":
self.objective = TripletLoss()
elif self.hparams.loss == "mnrl":
self.objective = MultipleNegativesRankingLoss()
else:
assert False, f"loss: {self.hparams.loss} not supported"
except AttributeError:
self.objective = MultipleNegativesRankingLoss()
# This is a dictionary to save the embeddings for source papers in test step.
self.embedding_output = {}
def forward(self, input_ids, token_type_ids, attention_mask):
# in lightning, forward defines the prediction/inference actions
output = self.model(
input_ids=input_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask,
)
if self.hparams.pooling == "mean":
embedding = mean_pooling(output, attention_mask)
elif self.hparams.pooling == "cls":
embedding = output[0][:, 0, :]
elif self.hparams.pooling == "pretrain":
embedding = output[1]
else:
assert False, f"{self.hparams.pooling} not supported"
return embedding
def setup(self, stage=None):
self.train_dataset, self.dev_datasets = get_train_dev_datasets(
data_dirs=self.hparams.data_dirs
)
def train_dataloader(self):
collate_fn = get_collate_fn(
self.tokenizer,
truncation=True,
padding="max_length",
return_tensors="pt",
max_length=512,
)
sampler = get_sampler(
dataset=self.train_dataset,
sampling=self.hparams.sampling_method,
batch_size=self.hparams.batch_size,
dataset_weights=self.hparams.dataset_weights,
)
return DataLoader(
self.train_dataset,
num_workers=self.hparams.num_workers,
batch_sampler=sampler,
pin_memory=True,
collate_fn=collate_fn,
)
def val_dataloader(self):
collate_fn = get_collate_fn(
self.tokenizer,
truncation=True,
padding="max_length",
return_tensors="pt",
max_length=512,
)
val_dataloaders = []
self.idx_to_val_dataset = {}
for idx, dev_dataset in enumerate(self.dev_datasets):
if dev_dataset.name in [
name for name, _ in self.idx_to_val_dataset.values()
]:
continue
val_dataloader = DataLoader(
dev_dataset,
batch_size=self.hparams.batch_size,
num_workers=self.hparams.num_workers,
shuffle=False,
pin_memory=True,
collate_fn=collate_fn,
)
val_dataloaders.append(val_dataloader)
self.idx_to_val_dataset[idx] = (dev_dataset.name, len(dev_dataset))
return val_dataloaders
@property
def total_steps(self) -> int:
"""The number of total training steps that will be run. Used for lr scheduler purposes."""
if self.hparams.steps is None:
num_devices = 1 # only 1 GPU support
effective_batch_size = (
self.hparams.batch_size * self.hparams.grad_accum * num_devices
)
dataset_size = len(self.train_dataset)
return (dataset_size / effective_batch_size) * self.hparams.epochs
else:
return self.hparams.steps
def get_lr_scheduler(self):
scheduler = get_linear_schedule_with_warmup(
self.opt,
num_warmup_steps=self.hparams.warmup_steps,
num_training_steps=self.total_steps,
)
scheduler = {"scheduler": scheduler, "interval": "step", "frequency": 1}
return scheduler
def configure_optimizers(self):
"""Prepare optimizer and schedule (linear warmup and decay)"""
model = self.model
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [
p
for n, p in model.named_parameters()
if not any(nd in n for nd in no_decay)
],
"weight_decay": self.hparams.weight_decay,
},
{
"params": [
p
for n, p in model.named_parameters()
if any(nd in n for nd in no_decay)
],
"weight_decay": 0.0,
},
]
if self.hparams.adafactor:
optimizer = Adafactor(
optimizer_grouped_parameters,
lr=self.hparams.lr,
scale_parameter=False,
relative_step=False,
)
else:
optimizer = AdamW(
optimizer_grouped_parameters,
lr=self.hparams.lr,
eps=self.hparams.adam_epsilon,
)
self.opt = optimizer
scheduler = self.get_lr_scheduler()
return [optimizer], [scheduler]
def training_step(self, batch, batch_idx):
source_embedding = self.forward(**batch[0])
pos_embedding = self.forward(**batch[1])
neg_embedding = self.forward(**batch[2])
loss = self.objective(source_embedding, pos_embedding, neg_embedding)
lr_scheduler = self.trainer.lr_schedulers[0]["scheduler"]
self.log(
"train_loss",
loss,
on_step=True,
on_epoch=False,
prog_bar=False,
logger=True,
)
self.log(
"lr",
lr_scheduler.get_last_lr()[-1],
on_step=True,
on_epoch=False,
prog_bar=False,
logger=True,
)
return {"loss": loss}
def validation_step(self, batch, batch_idx, dataloader_idx=0):
source_embedding = self.forward(**batch[0])
pos_embedding = self.forward(**batch[1])
neg_embedding = self.forward(**batch[2])
loss = self.objective(source_embedding, pos_embedding, neg_embedding)
self.log(
f"val_loss/{self.idx_to_val_dataset[dataloader_idx][0]}",
loss,
on_step=True,
on_epoch=False,
add_dataloader_idx=False,
)
return {f"val_loss_{self.idx_to_val_dataset[dataloader_idx][0]}": loss}
def _compute_avg_val_losses(self, outputs) -> dict:
if not isinstance(outputs[0], list): # single validation dataloader
outputs = [outputs]
results = {}
for idx, (name, _) in self.idx_to_val_dataset.items():
avg_loss = torch.stack([x[f"val_loss_{name}"] for x in outputs[idx]]).mean()
results[name] = avg_loss
self.logger.experiment.add_scalars(
"avg_val_loss", {name: results[name]}, self.global_step
)
for k, v in results.items():
if isinstance(v, torch.Tensor):
results[k] = v.detach().cpu().item()
avg_val_loss = sum(
results[name] * size for _, (name, size) in self.idx_to_val_dataset.items()
) / sum(size for _, (_, size) in self.idx_to_val_dataset.items())
results["mean"] = avg_val_loss
return results
def validation_epoch_end(self, outputs: list) -> dict:
avg_val_losses = self._compute_avg_val_losses(outputs)
self.log("avg_val_loss", avg_val_losses["mean"], on_epoch=True, prog_bar=True)
self.logger.experiment.add_scalars(
"avg_val_loss", {"mean": avg_val_losses["mean"]}, self.global_step
)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_path",
default=None,
help="path to the model (if not setting checkpoint)",
)
parser.add_argument(
"--data_dirs",
help="Space-separated list of directory paths containing the datasets.",
nargs="+",
required=True,
)
parser.add_argument(
"--sampling",
dest="sampling_method",
default="mixed",
type=str,
help="Sampling method to use (mixed, batch)",
)
parser.add_argument(
"--weights",
dest="dataset_weights",
help="Space-separated list of integers mapping one-to-one to the list of data_dirs.",
nargs="+",
type=int,
required=False,
)
parser.add_argument("--batch_size", default=1, type=int)
parser.add_argument(
"--loss", default="mnrl", type=str, help="Loss to use (mnrl, triplet)"
)
parser.add_argument("--grad_accum", default=1, type=int)
parser.add_argument("--seed", default=42, type=int)
parser.add_argument("--fp16", default=False, action="store_true")
parser.add_argument("--gpus", default=1, type=int)
parser.add_argument("--limit_test_batches", default=1.0, type=float)
parser.add_argument("--limit_val_batches", default=1.0, type=float)
parser.add_argument("--val_check_interval", default=1.0, type=float)
parser.add_argument("--fast_dev_run", default=None, type=int)
parser.add_argument("--steps", default=None, type=int)
parser.add_argument("--epochs", default=None, type=int)
parser.add_argument("--lr", type=float, default=2e-5)
parser.add_argument(
"--weight_decay", default=0.0, type=float, help="Weight decay if we apply some."
)
parser.add_argument(
"--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer."
)
parser.add_argument(
"--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps."
)
parser.add_argument(
"--num_workers", default=4, type=int, help="kwarg passed to DataLoader"
)
parser.add_argument("--adafactor", action="store_true")
parser.add_argument(
"--pooling",
default="mean",
type=str,
help="pooling mechanism during training (mean, cls, pretrain).",
)
parser.add_argument("--save_dir", required=True)
parser.add_argument(
"--version", help="pytorch lightning sub-directory name for output"
)
args = parser.parse_args()
print(args)
return args
def get_train_params(args):
train_params = {}
train_params["precision"] = 16 if args.fp16 else 32
train_params["accumulate_grad_batches"] = args.grad_accum
train_params["track_grad_norm"] = -1
train_params["limit_val_batches"] = args.limit_val_batches
if (
args.val_check_interval > 1.0
): # val_check_interval corresponds to the training steps
train_params["val_check_interval"] = int(args.val_check_interval)
else: # val_check_interval corresponds training set proportion (doesn't work for IterableDataset)
train_params["val_check_interval"] = args.val_check_interval
train_params["max_steps"] = -1 if args.steps is None else args.steps
train_params["max_epochs"] = args.epochs
train_params["log_every_n_steps"] = 1
train_params["gpus"] = args.gpus
if args.fast_dev_run:
train_params["fast_dev_run"] = args.fast_dev_run
return train_params
def main():
args = parse_args()
pl.seed_everything(seed=args.seed, workers=True)
if args.num_workers == 0:
print("num_workers cannot be less than 1")
return
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
if args.checkpoint_path is not None:
print("Loading from checkpoint")
model = Specter.load_from_checkpoint(args.checkpoint_path, init_args=vars(args))
else:
print("Training from scratch")
model = Specter(args)
logger = TensorBoardLogger(save_dir=args.save_dir, version=args.version)
checkpoint_callback = ModelCheckpoint(
dirpath=f"{logger.log_dir}/checkpoints/",
filename="{epoch}_{step}_{avg_val_loss:.3f}",
save_top_k=1,
verbose=True,
monitor="avg_val_loss", # monitors metrics logged by self.log.
mode="min",
)
progress_callback = TQDMProgressBar(refresh_rate=50)
early_stopping_callback = EarlyStopping(
monitor="avg_val_loss", patience=2, mode="min", verbose=True
)
extra_train_params = get_train_params(args)
trainer = pl.Trainer(
logger=logger,
callbacks=[
checkpoint_callback,
progress_callback,
early_stopping_callback,
],
enable_checkpointing=True,
**extra_train_params,
)
trainer.fit(model)
if __name__ == "__main__":
main()