-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
146 lines (120 loc) · 4.92 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
from typing import Dict, List
import numpy as np
import torch
from transformers import AutoModel, AutoTokenizer
from train import Specter, mean_pooling
class BaseEvalModel:
def __init__(self, model_path=None, pooling=None, sep=None) -> None:
self.model = None
self.tokenizer = None
self.pooling = None
self.sep = None
def encode_queries(self, queries: List[str], batch_size: int, **kwargs) -> np.array:
embeddings = []
for i in range(0, len(queries), batch_size):
# batch queries
texts = queries[i : i + batch_size]
# preprocess the input
inputs = self.tokenizer(
texts,
padding=True,
truncation=True,
return_tensors="pt",
max_length=512,
).to(self.device)
output = self.model(**inputs)
if self.pooling == "mean":
embedding = mean_pooling(output, inputs["attention_mask"])
elif self.pooling == "cls":
embedding = output[0][:, 0, :]
elif self.pooling == "pretrain":
embedding = output[1]
else: # if model already does pooling in the forward
embedding = output
# if kwargs.get('normalize_embeddings', False):
embedding = torch.nn.functional.normalize(
embedding, p=2, dim=1
) # doesn't change the ranking but better when using rank fusion
embeddings.append(embedding.cpu().detach().numpy())
return np.vstack(embeddings)
def encode_corpus(
self, corpus: List[Dict[str, str]], batch_size: int, **kwargs
) -> np.ndarray:
embeddings = []
sep = self.tokenizer.sep_token if self.sep == "tokenizer" else " "
for i in range(0, len(corpus), batch_size):
title_abs = [
(doc["title"] + sep + (doc.get("text") or "")).strip()
if "title" in doc
else (doc.get("text") or "").strip()
for doc in corpus[i : i + batch_size]
]
# preprocess the input
inputs = self.tokenizer(
title_abs,
padding=True,
truncation=True,
return_tensors="pt",
max_length=512,
).to(self.device)
output = self.model(**inputs)
if self.pooling == "mean":
embedding = mean_pooling(output, inputs["attention_mask"])
elif self.pooling == "cls":
embedding = output[0][:, 0, :]
elif self.pooling == "pretrain":
embedding = output[1]
else: # if model already does pooling in the forward
embedding = output
if kwargs.get("normalize_embeddings", False):
embedding = torch.nn.functional.normalize(embedding, p=2, dim=1)
embeddings.append(embedding.cpu().detach().numpy())
return np.vstack(embeddings)
class miniLMSPECTER(BaseEvalModel):
def __init__(self, model_path=None, pooling=None, sep=None) -> None:
self.device = torch.device("cuda")
self.model = Specter.load_from_checkpoint(model_path).to(self.device)
self.model.eval()
self.tokenizer = self.model.tokenizer
self.pooling = pooling
self.sep = sep
class scibertSPECTER(BaseEvalModel):
def __init__(self, model_path=None, pooling=None, sep=None) -> None:
self.device = torch.device("cuda")
self.model = scibertSpecter.load_from_checkpoint(model_path).to(self.device)
self.model.eval()
self.tokenizer = self.model.tokenizer
self.pooling = pooling
self.sep = sep
class HFmodel(BaseEvalModel):
def __init__(self, model_path=None, pooling=None, sep=None) -> None:
self.device = torch.device("cuda")
self.model = AutoModel.from_pretrained(model_path).to(self.device)
pp = 0
for p in list(self.model.parameters()):
nn = 1
for s in list(p.size()):
nn = nn * s
pp += nn
print(pp)
print(sum(p.numel() for p in self.model.parameters() if p.requires_grad))
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
self.pooling = pooling
self.sep = sep
if __name__ == "__main__":
# model = miniLMSPECTER(model_path="checkpoints/miniLM_specter.ckpt", pooling=None)
model = HFmodel(
model_path="sentence-transformers/msmarco-MiniLM-L-6-v3", pooling="mean"
)
queries = ["query 1", "query 2", "query 3", "query 4"]
emb = model.encode_queries(queries, batch_size=2)
print(emb)
print(emb.shape)
corpus = [
{"title": "title 1", "text": "text 1"},
{"title": "title 2", "text": "text 2"},
{"title": "title 3", "text": "text 3"},
]
emb = model.encode_corpus(corpus, batch_size=2)
print(emb)
print(emb.shape)