-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path12.js
43 lines (41 loc) · 1.21 KB
/
12.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
// Highly divisible triangular number
// Problem 12
//
// The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28.
// The first ten terms would be:
// 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
//
// Let us list the factors of the first seven triangle numbers:
// 1: 1
// 3: 1,3
// 6: 1,2,3,6
// 10: 1,2,5,10
// 15: 1,3,5,15
// 21: 1,3,7,21
// 28: 1,2,4,7,14,28
//
// We can see that 28 is the first triangle number to have over five divisors.
//
// What is the value of the first triangle number to have over five hundred divisors?
var firstTriangleNumberToHaveOverNDivisors = function (n) {
var t = 0, i = 0, divisors = [];
while (divisors.length < n) {
t += ++i;
divisors = [];
for (var d = 1, l = Math.sqrt(t); d <= l; d++) {
if (t % d == 0) {
divisors.push(d);
if (t / d != d) {
divisors.push(t / d);
}
}
}
}
divisors.sort(function (a, b) {
return a - b;
});
console.log(divisors);
console.log(t);
};
firstTriangleNumberToHaveOverNDivisors(5);
firstTriangleNumberToHaveOverNDivisors(500);