forked from tinghuiz/SfMLearner
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
43 lines (37 loc) · 1.62 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from __future__ import division
import tensorflow as tf
import pprint
import random
import numpy as np
from SfMLearner import SfMLearner
import os
flags = tf.app.flags
flags.DEFINE_string("dataset_dir", "", "Dataset directory")
flags.DEFINE_string("checkpoint_dir", "./checkpoints/", "Directory name to save the checkpoints")
flags.DEFINE_float("learning_rate", 0.0002, "Learning rate of for adam")
flags.DEFINE_float("beta1", 0.9, "Momentum term of adam")
flags.DEFINE_float("smooth_weight", 0.0, "Weight for smoothness")
flags.DEFINE_float("explain_reg_weight", 0.0, "Weight for explanability regularization")
flags.DEFINE_integer("batch_size", 4, "The size of of a sample batch")
flags.DEFINE_integer("img_height", 128, "Image height")
flags.DEFINE_integer("img_width", 416, "Image width")
flags.DEFINE_integer("seq_length", 3, "Sequence length for each example")
flags.DEFINE_integer("max_steps", 200000, "Maximum number of training iterations")
flags.DEFINE_integer("summary_freq", 100, "Logging every log_freq iterations")
flags.DEFINE_integer("save_latest_freq", 5000, \
"Save the latest model every save_latest_freq iterations (overwrites the previous latest model)")
flags.DEFINE_boolean("continue_train", False, "Continue training from previous checkpoint")
FLAGS = flags.FLAGS
def main(_):
seed = 8964
tf.set_random_seed(seed)
np.random.seed(seed)
random.seed(seed)
pp = pprint.PrettyPrinter()
pp.pprint(flags.FLAGS.__flags)
if not os.path.exists(FLAGS.checkpoint_dir):
os.makedirs(FLAGS.checkpoint_dir)
sfm = SfMLearner()
sfm.train(FLAGS)
if __name__ == '__main__':
tf.app.run()