-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathbackend_new.py
413 lines (331 loc) · 15.3 KB
/
backend_new.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
from typing import List, Optional, Union, Dict
import numpy as np
import pandas as pd
import torch as t
from sentence_transformers import SentenceTransformer
import os
from datetime import date, datetime
from sentence_transformers.util import cos_sim
import uuid
from fastapi import FastAPI
import uvicorn
from fastapi.middleware.cors import CORSMiddleware
import logging
logging.basicConfig(format='%(asctime)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO)
class Sentence2vector:
"""
use model to convert sentence to vector
"""
def __init__(self,
model_name: str = "hfl/chinese-roberta-wwm-ext",
device: str = 'cuda') -> None:
logging.info("init sentence2vector")
self.model = SentenceTransformer(
model_name_or_path=model_name, device='cuda')
self.model_name = model_name
if t.cuda.is_available() and device == 'cuda':
self.device = device
else:
self.device = 'cpu'
def encode(self, text: Union[str, List[str]]):
logging.info("sentence 2 vector encoding")
if text is None:
text = [""]
if isinstance(text, str):
text = [text]
if len(text) > 1:
show_progress_bar = True
else:
show_progress_bar = False
text = [str(i) for i in text]
vector = self.model.encode(
text,
device=self.device,
show_progress_bar=show_progress_bar)
# if t.cuda.is_available() and self.device == 'cuda':
# vector = self.model.encode(
# text,
# device=self.device,
# show_progress_bar=show_progress_bar)
# else:
# vector = self.model.encode(text)
return vector
class SVD:
def __init__(self, file_dir: str = "QADIR"):
self.s2v = Sentence2vector()
logging.info("init search vector database")
self.file_dir = file_dir
os.makedirs(name=self.file_dir, exist_ok=True)
self.title_file_path = file_dir + "/title_raw_data.csv"
self.sim_file_path = file_dir + "/similar_raw_data.csv"
if os.path.exists(self.title_file_path) and os.path.exists(self.sim_file_path):
logging.info("load data from save file")
# process title file
title_df = pd.read_csv(self.title_file_path)
title_df['rep_id'] = title_df['rep_id'].astype('str')
if 'status_question' not in title_df.columns.tolist():
title_df['status_question'] = 1
if 'create_time' not in title_df.columns.tolist():
title_df['create_time'] = datetime.now()
if 'modify_time' not in title_df.columns.tolist():
title_df['modify_time'] = datetime.now()
# process similarity file
sim_df = pd.read_csv(self.sim_file_path)
sim_df['rep_id'] = sim_df['rep_id'].astype('str')
if 'status_similar' not in sim_df.columns.tolist():
sim_df['status_similar'] = 1
if 'create_time' not in sim_df.columns.tolist():
sim_df['create_time'] = datetime.now()
if 'modify_time' not in sim_df.columns.tolist():
sim_df['modify_time'] = datetime.now()
sim_df['sim_index'] = np.arange(sim_df.shape[0]) +0#+ self.sim_df.shape[0]
rep_id_4_list = title_df.loc[title_df['status_question'] == 0]['rep_id'].tolist(
)
sim_df.loc[sim_df['rep_id'].isin(rep_id_4_list), 'status_similar'] = 0
self.title_df = title_df.copy() # pd.concat([self.title_df, title_df.copy()])
self.sim_df = sim_df.copy() # pd.concat([self.sim_df, sim_df.copy()])
# self.title_df = pd.concat([self.title_df, title_df.copy()])
# self.sim_df = pd.concat([self.sim_df, sim_df.copy()])
else:
logging.info("load data from file to create a svd object")
self.create_user_info()
self.title_df = pd.read_csv(self.first_title_file)
self.sim_df = pd.read_csv(self.first_simi_file)
self.vector4sim = self.s2v.encode(self.sim_df['similarity'].tolist())
self.vector4title = self.s2v.encode(self.title_df['title'].tolist())
def create_user_info(self):
"""
add info to this database
"""
os.makedirs(name='init_user_dir', exist_ok=True)
title_file = "init_user_dir/title_raw_data.csv"
simi_file = "init_user_dir/similar_raw_data.csv"
self.first_title_file = title_file
self.first_simi_file = simi_file
if not os.path.exists(title_file):
uuid_str = uuid.uuid4().__str__()
cui_ = pd.DataFrame({'title': ['你是谁'],
'answer': ['由公众号【world of statistics】作者创建']})
cui_['create_time'] = datetime.now()
cui_['modify_time'] = datetime.now()
cui_['rep_id'] = uuid_str
cui_['status_question'] = 1
# print(cui_)
simi_cui = pd.DataFrame({
'similarity': ['你叫什么名字', '你从哪里来的']
})
simi_cui['create_time'] = datetime.now()
simi_cui['modify_time'] = datetime.now()
simi_cui['rep_id'] = uuid_str
simi_cui['status_similar'] = 1
simi_cui['sim_index'] = np.arange(simi_cui.shape[0])
# print(simi_cui)
cui_.to_csv(title_file, index=False)
simi_cui.to_csv(simi_file, index=False)
def select_by_repid(self, temp_repid: str):
"""
return title and similar df
"""
logging.info("select a question by repid")
temp_title_df = self.title_df.loc[self.title_df['rep_id']
== temp_repid]
temp_sim_df = self.sim_df.loc[(self.sim_df['rep_id'] == temp_repid) & (
self.sim_df['status_similar'] == 1)]
return temp_title_df, temp_sim_df
def save_data2_file(self):
self.title_df.to_csv(self.title_file_path, index=False)
self.sim_df.to_csv(self.sim_file_path, index=False)
def search_topn(self, search_text: str, topn: Optional[int]) -> pd.DataFrame:
"""
return topN by query
"""
logging.info("search topN by search text")
if topn is None:
topn = 5
search_text_encoding = self.s2v.encode(search_text)
# search with sim then generate scores and rep_id
search_sim_score = cos_sim(
search_text_encoding, self.vector4sim).numpy().flatten()
search_sim_score_df = self.sim_df[['rep_id', 'status_similar']].copy().rename(
columns={'status_similar': 'status'})
search_sim_score_df['score'] = search_sim_score
# search_sim_score_df['mask'] = self.sim_df['status_similar'] == 1
search_sim_score_df = search_sim_score_df.loc[self.sim_df['status_similar'] == 1, :]
search_title_score = cos_sim(
search_text_encoding, self.vector4title
).numpy().flatten()
search_title_score_df = self.title_df[['rep_id', 'status_question']].copy().rename(
columns={'status_question': 'status'})
search_title_score_df['score'] = search_title_score
# search_title_score_df['mask'] = self.title_df['status_question'] == 1
search_title_score_df = search_title_score_df.loc[self.title_df['status_question'] == 1, :]
# concat
total_value = pd.concat([search_sim_score_df, search_title_score_df])
# total_value = total_value.loc[total_value['mask'], :]
total_value['rank'] = total_value['score'].rank(ascending=False)
total_value['re_rank'] = 1 / total_value['rank']
finalrepid = total_value.query('''status ==1''').groupby(['rep_id']).agg(
mrr=('re_rank', 'mean')
).sort_values(by='mrr', ascending=False).head(topn).reset_index(drop=False)
return finalrepid
def create_new(self, part_title: Dict, part_sim: Union[str, List[str]]):
"""
create new item
"""
logging.info("create a new item")
if not isinstance(part_title, Dict):
raise ValueError("part_title must be a dict")
question_title = part_title.get('title', None)
if question_title is None:
raise ValueError("question title must be a str dont empty")
rep_id = uuid.uuid4().__str__()
clean_title_new_df = pd.DataFrame({'title': [question_title],
'answer': [part_title.get('answer', None)],
# 'ret_type': [rep_type],
# 'store_id': [store_id],
'rep_id': [rep_id],
'status_question': [1],
'create_time': [datetime.now()],
'modify_time': [datetime.now()]
})
# print(clean_title_new_df.info())
# ['rep_id', 'sim_title', 'status', 'create_time', 'modify_time', 'sim_index']
if isinstance(part_sim, str):
part_sim_list = part_sim.split('###')
elif isinstance(part_sim, List):
part_sim_list = part_sim
clean_sim_new_df = pd.DataFrame({'similarity': part_sim_list})
clean_sim_new_df['rep_id'] = rep_id
clean_sim_new_df['status_similar'] = 1
clean_sim_new_df['create_time'] = datetime.now()
clean_sim_new_df['modify_time'] = datetime.now()
start_sim_index = int(self.sim_df['sim_index'].max()) + 1
# clean_sim_new_df['sim_index'] = np.arange(
# start_sim_index + 1, start_sim_index + 1 + len(part_sim_list))
clean_sim_new_df['sim_index'] = np.arange(
len(part_sim_list)) + self.sim_df.shape[0]
self.sim_df = pd.concat(
[self.sim_df, clean_sim_new_df]).reset_index(drop=True)
self.title_df = pd.concat(
[self.title_df, clean_title_new_df]).reset_index(drop=True)
# update vector
vector4sim_new = self.s2v.encode(part_sim_list)
vector4title_new = self.s2v.encode(question_title)
self.vector4sim = np.vstack([self.vector4sim, vector4sim_new])
self.vector4title = np.vstack([self.vector4title, vector4title_new])
def delete_title(self, delete_title: Optional[Union[str, List[str]]] = None):
"""
delete item
1. delete_title: delete a title ,need a rep_id
"""
logging.info("delete a title or delete a sim_title")
if delete_title is not None:
# if isinstance(delete_title, List):
# delete_title = delete_title
if isinstance(delete_title, str):
if delete_title.find(',') != -1:
delete_title = delete_title.split(',')
delete_title = [delete_title]
self.title_df.loc[self.title_df['rep_id'].isin(
delete_title), 'status_question'] = 0
self.sim_df.loc[self.sim_df['rep_id'].isin(
delete_title), 'status_similar'] = 0
def delete_similar(self, sim_index: Optional[Union[int, List[int]]] = None):
"""
2. delete_sim_title: 删除一个相似问法,需要传递的是相似问法的文本
"""
logging.info("delete similar title")
if sim_index is not None:
if isinstance(sim_index, int):
sim_index = [sim_index]
if isinstance(sim_index, List):
# delete_sim_title = delete_sim_title.split(',')
print(f'simi_index: {sim_index}')
self.sim_df.loc[self.sim_df['sim_index'].isin(sim_index), 'status_similar'] = 0
def update_answer(self, update_repid: Optional[str] = None, new_answer: Optional[str] = None):
"""
update answer
"""
logging.info("update answer by repid")
if update_repid is not None and new_answer is not None:
self.title_df.loc[self.title_df['rep_id']
== update_repid, 'answer'] = new_answer
def add_similar(self, rep_id: str = None, part_sim_list: Union[str, List[str]] = None):
"""
in a spec rep_id , add new similarity title
"""
logging.info("add sim title to database")
if rep_id is not None:
if part_sim_list is not None:
if isinstance(part_sim_list, str):
part_sim_list = part_sim_list.split('###')
elif isinstance(part_sim_list, List):
part_sim_list = part_sim_list
clean_sim_new_df = pd.DataFrame({'similarity': part_sim_list})
clean_sim_new_df['rep_id'] = rep_id
clean_sim_new_df['status_similar'] = 1
clean_sim_new_df['create_time'] = datetime.now()
clean_sim_new_df['modify_time'] = datetime.now()
# start_sim_index = int(self.sim_df['sim_index'].max()) + 1
# clean_sim_new_df['sim_index'] = np.arange(
# start_sim_index + 1, start_sim_index + 1 + len(part_sim_list))
clean_sim_new_df['sim_index'] = np.arange(
len(part_sim_list)) + self.sim_df.shape[0]
self.sim_df = pd.concat(
[self.sim_df, clean_sim_new_df]).reset_index(drop=True)
vector4sim_new = self.s2v.encode(part_sim_list)
self.vector4sim = np.vstack([self.vector4sim, vector4sim_new])
svd = SVD()
# svd.init_by_file()
app = FastAPI()
origins = ["*"]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/search_topn")
def searchTopN(search_text=None, topn=2):
topn = int(topn)
data = svd.search_topn(search_text=search_text, topn=topn)
data = data.to_json(orient='records')
return data
@app.get("/select_by_repid")
def select_by_repid(rep_id):
temp_title_df, temp_sim_df = svd.select_by_repid(rep_id)
data = {'title': temp_title_df.to_json(orient='records'),
'sim': temp_sim_df.to_json(orient='records')}
return data
@app.get("/create_new")
def create_new(part_title=None, part_answer=None, part_sim=None):
part_title = {
'title': part_title,
'answer': part_answer
}
part_sim = part_sim.split('###')
svd.create_new(part_title, part_sim)
@app.get("/add_similar")
def add_similar(rep_id: str = None, simi_list: str = None):
svd.add_similar(rep_id=rep_id, part_sim_list=simi_list)
@app.get("/delete_title")
def delete_title(delete_title=None):
svd.delete_title(delete_title)
@app.get("/delete_similar")
def delete_similar(delete_similar=None):
if delete_similar.find('###') != -1:
delete_similar = [int(i) for i in delete_similar.split('###')]
else:
delete_similar = int(delete_similar)
svd.delete_similar(sim_index=delete_similar)
@app.get("/update_answer")
def update_answer(update_repid=None, new_answer=None):
svd.update_answer(update_repid, new_answer)
@app.get("/saved2f")
def save_data2file():
svd.save_data2_file()
if __name__ == '__main__':
uvicorn.run(app='backend_new:app', host="0.0.0.0",
port=8010, reload=False, debug=False)