-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathutils.py
100 lines (87 loc) · 2.98 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
from monotonic_align import maximum_path
from monotonic_align import mask_from_lens
from monotonic_align.core import maximum_path_c
import numpy as np
import torch
import copy
from torch import nn
import torch.nn.functional as F
import torchaudio
import librosa
import matplotlib.pyplot as plt
def maximum_path(neg_cent, mask):
""" Cython optimized version.
neg_cent: [b, t_t, t_s]
mask: [b, t_t, t_s]
"""
device = neg_cent.device
dtype = neg_cent.dtype
neg_cent = np.ascontiguousarray(neg_cent.data.cpu().numpy().astype(np.float32))
path = np.ascontiguousarray(np.zeros(neg_cent.shape, dtype=np.int32))
t_t_max = np.ascontiguousarray(mask.sum(1)[:, 0].data.cpu().numpy().astype(np.int32))
t_s_max = np.ascontiguousarray(mask.sum(2)[:, 0].data.cpu().numpy().astype(np.int32))
maximum_path_c(path, neg_cent, t_t_max, t_s_max)
return torch.from_numpy(path).to(device=device, dtype=dtype)
def get_data_path_list(train_path=None, val_path=None):
if train_path is None:
train_path = "Data/train_list.txt"
if val_path is None:
val_path = "Data/val_list.txt"
with open(train_path, 'r') as f:
train_list = f.readlines()
with open(val_path, 'r') as f:
val_list = f.readlines()
return train_list, val_list
def length_to_mask(lengths):
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
mask = torch.gt(mask+1, lengths.unsqueeze(1))
return mask
# for adversarial loss
def adv_loss(logits, target):
assert target in [1, 0]
if len(logits.shape) > 1:
logits = logits.reshape(-1)
targets = torch.full_like(logits, fill_value=target)
logits = logits.clamp(min=-10, max=10) # prevent nan
loss = F.binary_cross_entropy_with_logits(logits, targets)
return loss
# for R1 regularization loss
def r1_reg(d_out, x_in):
# zero-centered gradient penalty for real images
batch_size = x_in.size(0)
grad_dout = torch.autograd.grad(
outputs=d_out.sum(), inputs=x_in,
create_graph=True, retain_graph=True, only_inputs=True
)[0]
grad_dout2 = grad_dout.pow(2)
assert(grad_dout2.size() == x_in.size())
reg = 0.5 * grad_dout2.view(batch_size, -1).sum(1).mean(0)
return reg
# for norm consistency loss
def log_norm(x, mean=-4, std=4, dim=2):
"""
normalized log mel -> mel -> norm -> log(norm)
"""
x = torch.log(torch.exp(x * std + mean).norm(dim=dim))
return x
# for F0 consistency loss
def compute_mean_f0(f0):
f0_mean = f0.mean(-1)
f0_mean = f0_mean.expand(f0.shape[-1], f0_mean.shape[0]).transpose(0, 1) # (B, M)
return f0_mean
def f0_loss(x_f0, y_f0):
"""
x.shape = (B, 1, M, L): predict
y.shape = (B, 1, M, L): target
"""
# compute the mean
x_mean = compute_mean_f0(x_f0)
y_mean = compute_mean_f0(y_f0)
loss = F.l1_loss(x_f0 / x_mean, y_f0 / y_mean)
return loss
def get_image(arrs):
plt.switch_backend('agg')
fig = plt.figure()
ax = plt.gca()
ax.imshow(arrs)
return fig