-
Notifications
You must be signed in to change notification settings - Fork 109
/
Copy pathtrain.py
156 lines (131 loc) · 5.39 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#!/usr/bin/env python3
#coding:utf-8
import os
import os.path as osp
import re
import sys
import yaml
import shutil
import numpy as np
import torch
import click
import warnings
warnings.simplefilter('ignore')
from functools import reduce
from munch import Munch
from meldataset import build_dataloader
from optimizers import build_optimizer
from models import build_model
from trainer import Trainer
from torch.utils.tensorboard import SummaryWriter
from Utils.ASR.models import ASRCNN
from Utils.JDC.model import JDCNet
import logging
from logging import StreamHandler
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
handler = StreamHandler()
handler.setLevel(logging.DEBUG)
logger.addHandler(handler)
torch.backends.cudnn.benchmark = True #
@click.command()
@click.option('-p', '--config_path', default='Configs/config.yml', type=str)
def main(config_path):
config = yaml.safe_load(open(config_path))
log_dir = config['log_dir']
if not osp.exists(log_dir): os.makedirs(log_dir, exist_ok=True)
shutil.copy(config_path, osp.join(log_dir, osp.basename(config_path)))
writer = SummaryWriter(log_dir + "/tensorboard")
# write logs
file_handler = logging.FileHandler(osp.join(log_dir, 'train.log'))
file_handler.setLevel(logging.DEBUG)
file_handler.setFormatter(logging.Formatter('%(levelname)s:%(asctime)s: %(message)s'))
logger.addHandler(file_handler)
batch_size = config.get('batch_size', 10)
device = config.get('device', 'cpu')
epochs = config.get('epochs', 1000)
save_freq = config.get('save_freq', 20)
train_path = config.get('train_data', None)
val_path = config.get('val_data', None)
stage = config.get('stage', 'star')
fp16_run = config.get('fp16_run', False)
# load data
train_list, val_list = get_data_path_list(train_path, val_path)
train_dataloader = build_dataloader(train_list,
batch_size=batch_size,
num_workers=4,
device=device)
val_dataloader = build_dataloader(val_list,
batch_size=batch_size,
validation=True,
num_workers=2,
device=device)
# load pretrained ASR model
ASR_config = config.get('ASR_config', False)
ASR_path = config.get('ASR_path', False)
with open(ASR_config) as f:
ASR_config = yaml.safe_load(f)
ASR_model_config = ASR_config['model_params']
ASR_model = ASRCNN(**ASR_model_config)
params = torch.load(ASR_path, map_location='cpu')['model']
ASR_model.load_state_dict(params)
_ = ASR_model.eval()
# load pretrained F0 model
F0_path = config.get('F0_path', False)
F0_model = JDCNet(num_class=1, seq_len=192)
params = torch.load(F0_path, map_location='cpu')['net']
F0_model.load_state_dict(params)
# build model
model, model_ema = build_model(Munch(config['model_params']), F0_model, ASR_model)
scheduler_params = {
"max_lr": float(config['optimizer_params'].get('lr', 2e-4)),
"pct_start": float(config['optimizer_params'].get('pct_start', 0.0)),
"epochs": epochs,
"steps_per_epoch": len(train_dataloader),
}
_ = [model[key].to(device) for key in model]
_ = [model_ema[key].to(device) for key in model_ema]
scheduler_params_dict = {key: scheduler_params.copy() for key in model}
scheduler_params_dict['mapping_network']['max_lr'] = 2e-6
optimizer = build_optimizer({key: model[key].parameters() for key in model},
scheduler_params_dict=scheduler_params_dict)
trainer = Trainer(args=Munch(config['loss_params']), model=model,
model_ema=model_ema,
optimizer=optimizer,
device=device,
train_dataloader=train_dataloader,
val_dataloader=val_dataloader,
logger=logger,
fp16_run=fp16_run)
if config.get('pretrained_model', '') != '':
trainer.load_checkpoint(config['pretrained_model'],
load_only_params=config.get('load_only_params', True))
for _ in range(1, epochs+1):
epoch = trainer.epochs
train_results = trainer._train_epoch()
eval_results = trainer._eval_epoch()
results = train_results.copy()
results.update(eval_results)
logger.info('--- epoch %d ---' % epoch)
for key, value in results.items():
if isinstance(value, float):
logger.info('%-15s: %.4f' % (key, value))
writer.add_scalar(key, value, epoch)
else:
for v in value:
writer.add_figure('eval_spec', v, epoch)
if (epoch % save_freq) == 0:
trainer.save_checkpoint(osp.join(log_dir, 'epoch_%05d.pth' % epoch))
return 0
def get_data_path_list(train_path=None, val_path=None):
if train_path is None:
train_path = "Data/train_list.txt"
if val_path is None:
val_path = "Data/val_list.txt"
with open(train_path, 'r') as f:
train_list = f.readlines()
with open(val_path, 'r') as f:
val_list = f.readlines()
return train_list, val_list
if __name__=="__main__":
main()