-
Notifications
You must be signed in to change notification settings - Fork 110
/
Copy pathlosses.py
215 lines (181 loc) · 7.43 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
#coding:utf-8
import os
import torch
from torch import nn
from munch import Munch
from transforms import build_transforms
import torch.nn.functional as F
import numpy as np
def compute_d_loss(nets, args, x_real, y_org, y_trg, z_trg=None, x_ref=None, use_r1_reg=True, use_adv_cls=False, use_con_reg=False):
args = Munch(args)
assert (z_trg is None) != (x_ref is None)
# with real audios
x_real.requires_grad_()
out = nets.discriminator(x_real, y_org)
loss_real = adv_loss(out, 1)
# R1 regularizaition (https://arxiv.org/abs/1801.04406v4)
if use_r1_reg:
loss_reg = r1_reg(out, x_real)
else:
loss_reg = torch.FloatTensor([0]).to(x_real.device)
# consistency regularization (bCR-GAN: https://arxiv.org/abs/2002.04724)
loss_con_reg = torch.FloatTensor([0]).to(x_real.device)
if use_con_reg:
t = build_transforms()
out_aug = nets.discriminator(t(x_real).detach(), y_org)
loss_con_reg += F.smooth_l1_loss(out, out_aug)
# with fake audios
with torch.no_grad():
if z_trg is not None:
s_trg = nets.mapping_network(z_trg, y_trg)
else: # x_ref is not None
s_trg = nets.style_encoder(x_ref, y_trg)
F0 = nets.f0_model.get_feature_GAN(x_real)
x_fake = nets.generator(x_real, s_trg, masks=None, F0=F0)
out = nets.discriminator(x_fake, y_trg)
loss_fake = adv_loss(out, 0)
if use_con_reg:
out_aug = nets.discriminator(t(x_fake).detach(), y_trg)
loss_con_reg += F.smooth_l1_loss(out, out_aug)
# adversarial classifier loss
if use_adv_cls:
out_de = nets.discriminator.classifier(x_fake)
loss_real_adv_cls = F.cross_entropy(out_de[y_org != y_trg], y_org[y_org != y_trg])
if use_con_reg:
out_de_aug = nets.discriminator.classifier(t(x_fake).detach())
loss_con_reg += F.smooth_l1_loss(out_de, out_de_aug)
else:
loss_real_adv_cls = torch.zeros(1).mean()
loss = loss_real + loss_fake + args.lambda_reg * loss_reg + \
args.lambda_adv_cls * loss_real_adv_cls + \
args.lambda_con_reg * loss_con_reg
return loss, Munch(real=loss_real.item(),
fake=loss_fake.item(),
reg=loss_reg.item(),
real_adv_cls=loss_real_adv_cls.item(),
con_reg=loss_con_reg.item())
def compute_g_loss(nets, args, x_real, y_org, y_trg, z_trgs=None, x_refs=None, use_adv_cls=False):
args = Munch(args)
assert (z_trgs is None) != (x_refs is None)
if z_trgs is not None:
z_trg, z_trg2 = z_trgs
if x_refs is not None:
x_ref, x_ref2 = x_refs
# compute style vectors
if z_trgs is not None:
s_trg = nets.mapping_network(z_trg, y_trg)
else:
s_trg = nets.style_encoder(x_ref, y_trg)
# compute ASR/F0 features (real)
with torch.no_grad():
F0_real, GAN_F0_real, cyc_F0_real = nets.f0_model(x_real)
ASR_real = nets.asr_model.get_feature(x_real)
# adversarial loss
x_fake = nets.generator(x_real, s_trg, masks=None, F0=GAN_F0_real)
out = nets.discriminator(x_fake, y_trg)
loss_adv = adv_loss(out, 1)
# compute ASR/F0 features (fake)
F0_fake, GAN_F0_fake, _ = nets.f0_model(x_fake)
ASR_fake = nets.asr_model.get_feature(x_fake)
# norm consistency loss
x_fake_norm = log_norm(x_fake)
x_real_norm = log_norm(x_real)
loss_norm = ((torch.nn.ReLU()(torch.abs(x_fake_norm - x_real_norm) - args.norm_bias))**2).mean()
# F0 loss
loss_f0 = f0_loss(F0_fake, F0_real)
# style F0 loss (style initialization)
if x_refs is not None and args.lambda_f0_sty > 0 and not use_adv_cls:
F0_sty, _, _ = nets.f0_model(x_ref)
loss_f0_sty = F.l1_loss(compute_mean_f0(F0_fake), compute_mean_f0(F0_sty))
else:
loss_f0_sty = torch.zeros(1).mean()
# ASR loss
loss_asr = F.smooth_l1_loss(ASR_fake, ASR_real)
# style reconstruction loss
s_pred = nets.style_encoder(x_fake, y_trg)
loss_sty = torch.mean(torch.abs(s_pred - s_trg))
# diversity sensitive loss
if z_trgs is not None:
s_trg2 = nets.mapping_network(z_trg2, y_trg)
else:
s_trg2 = nets.style_encoder(x_ref2, y_trg)
x_fake2 = nets.generator(x_real, s_trg2, masks=None, F0=GAN_F0_real)
x_fake2 = x_fake2.detach()
_, GAN_F0_fake2, _ = nets.f0_model(x_fake2)
loss_ds = torch.mean(torch.abs(x_fake - x_fake2))
loss_ds += F.smooth_l1_loss(GAN_F0_fake, GAN_F0_fake2.detach())
# cycle-consistency loss
s_org = nets.style_encoder(x_real, y_org)
x_rec = nets.generator(x_fake, s_org, masks=None, F0=GAN_F0_fake)
loss_cyc = torch.mean(torch.abs(x_rec - x_real))
# F0 loss in cycle-consistency loss
if args.lambda_f0 > 0:
_, _, cyc_F0_rec = nets.f0_model(x_rec)
loss_cyc += F.smooth_l1_loss(cyc_F0_rec, cyc_F0_real)
if args.lambda_asr > 0:
ASR_recon = nets.asr_model.get_feature(x_rec)
loss_cyc += F.smooth_l1_loss(ASR_recon, ASR_real)
# adversarial classifier loss
if use_adv_cls:
out_de = nets.discriminator.classifier(x_fake)
loss_adv_cls = F.cross_entropy(out_de[y_org != y_trg], y_trg[y_org != y_trg])
else:
loss_adv_cls = torch.zeros(1).mean()
loss = args.lambda_adv * loss_adv + args.lambda_sty * loss_sty \
- args.lambda_ds * loss_ds + args.lambda_cyc * loss_cyc\
+ args.lambda_norm * loss_norm \
+ args.lambda_asr * loss_asr \
+ args.lambda_f0 * loss_f0 \
+ args.lambda_f0_sty * loss_f0_sty \
+ args.lambda_adv_cls * loss_adv_cls
return loss, Munch(adv=loss_adv.item(),
sty=loss_sty.item(),
ds=loss_ds.item(),
cyc=loss_cyc.item(),
norm=loss_norm.item(),
asr=loss_asr.item(),
f0=loss_f0.item(),
adv_cls=loss_adv_cls.item())
# for norm consistency loss
def log_norm(x, mean=-4, std=4, dim=2):
"""
normalized log mel -> mel -> norm -> log(norm)
"""
x = torch.log(torch.exp(x * std + mean).norm(dim=dim))
return x
# for adversarial loss
def adv_loss(logits, target):
assert target in [1, 0]
if len(logits.shape) > 1:
logits = logits.reshape(-1)
targets = torch.full_like(logits, fill_value=target)
logits = logits.clamp(min=-10, max=10) # prevent nan
loss = F.binary_cross_entropy_with_logits(logits, targets)
return loss
# for R1 regularization loss
def r1_reg(d_out, x_in):
# zero-centered gradient penalty for real images
batch_size = x_in.size(0)
grad_dout = torch.autograd.grad(
outputs=d_out.sum(), inputs=x_in,
create_graph=True, retain_graph=True, only_inputs=True
)[0]
grad_dout2 = grad_dout.pow(2)
assert(grad_dout2.size() == x_in.size())
reg = 0.5 * grad_dout2.view(batch_size, -1).sum(1).mean(0)
return reg
# for F0 consistency loss
def compute_mean_f0(f0):
f0_mean = f0.mean(-1)
f0_mean = f0_mean.expand(f0.shape[-1], f0_mean.shape[0]).transpose(0, 1) # (B, M)
return f0_mean
def f0_loss(x_f0, y_f0):
"""
x.shape = (B, 1, M, L): predict
y.shape = (B, 1, M, L): target
"""
# compute the mean
x_mean = compute_mean_f0(x_f0)
y_mean = compute_mean_f0(y_f0)
loss = F.l1_loss(x_f0 / x_mean, y_f0 / y_mean)
return loss