-
Notifications
You must be signed in to change notification settings - Fork 25
/
PredictNetwork.py
56 lines (44 loc) · 1.87 KB
/
PredictNetwork.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import math
import torch
import torch.nn as nn
from torch.autograd import Variable
from blocks import softmax, ResBlock
class PredictNetwork(nn.Module):
def __init__(self, ninp, nout, nslots, dropout, nlayers=1):
super(PredictNetwork, self).__init__()
self.ninp = ninp
self.nout = nout
self.nslots = nslots
self.nlayers = nlayers
self.drop = nn.Dropout(dropout)
self.projector_pred = nn.Sequential(nn.Dropout(dropout),
nn.Linear(ninp, ninp),
nn.Dropout(dropout))
if nlayers > 0:
self.res = ResBlock(ninp*2, nout, dropout, nlayers)
else:
self.res = None
self.ffd = nn.Sequential(nn.Dropout(dropout),
nn.Linear(ninp * 2, nout),
nn.BatchNorm1d(nout),
nn.Tanh()
)
def forward(self, input, input_memory):
input = torch.cat([input, input_memory], dim=1)
if self.nlayers > 0:
input = self.res(input)
output = self.ffd(input)
return output
def attention(self, input, memory, gate_time):
key = self.projector_pred(input)
# select memory to use
logits = torch.bmm(memory, key[:, :, None]).squeeze(2)
logits = logits / math.sqrt(self.ninp)
attention = softmax(logits, gate_time)
selected_memory_h = (memory * attention[:, :, None]).sum(dim=1)
memory = torch.cat([input[:, None, :], memory[:, :-1, :]], dim=1)
return selected_memory_h, memory, attention
def init_hidden(self, bsz):
weight = next(self.parameters()).data
self.ones = Variable(weight.new(bsz, 1).zero_() + 1.)
return Variable(weight.new(bsz, self.nslots, self.ninp).zero_())