forked from wogong/pytorch-dann
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist_mnistm_winsorize.py
96 lines (74 loc) · 2.81 KB
/
mnist_mnistm_winsorize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import os
import sys
import torch
sys.path.append('../')
from models.model import MNISTmodel, MNISTmodel_plain
from core.train_weight import train_dann
from utils.utils import get_data_loader, get_data_loader_weight, init_model, init_random_seed, get_dataset_root
from torch.utils.tensorboard import SummaryWriter
class Config(object):
# params for path
model_name = "mnist-mnistm-weight"
dataset_root = get_dataset_root()
model_root = os.path.expanduser(os.path.join('runs', model_name))
finetune_flag = False
# params for datasets and data loader
batch_size = 64
# params for source dataset
src_dataset = "mnist"
src_model_trained = True
src_classifier_restore = os.path.join(model_root, src_dataset + '-source-classifier-final.pt')
class_num_src = 31
# params for target dataset
tgt_dataset = "mnistm"
tgt_model_trained = True
dann_restore = os.path.join(model_root, src_dataset + '-' + tgt_dataset + '-dann-final.pt')
# params for pretrain
num_epochs_src = 100
log_step_src = 10
save_step_src = 50
eval_step_src = 20
# params for training dann
gpu_id = '0'
## for digit
num_epochs = 100
log_step = 20
save_step = 50
eval_step = 1
## for office
# num_epochs = 1000
# log_step = 10 # iters
# save_step = 500
# eval_step = 5 # epochs
lr_adjust_flag = 'simple'
src_only_flag = False
manual_seed = 8888
alpha = 0
# params for optimizing models
lr = 5e-4
momentum = 0
weight_decay = 0
params = Config()
logger = SummaryWriter(params.model_root)
# init random seed
init_random_seed(params.manual_seed)
# init device
device = torch.device("cuda:" + params.gpu_id if torch.cuda.is_available() else "cpu")
WEIGHTS = torch.ones(10)
# load dataset
src_data_loader, num_src_train = get_data_loader_weight(params.src_dataset, params.dataset_root, params.batch_size, train=True)
src_data_loader_eval = get_data_loader(params.src_dataset, params.dataset_root, params.batch_size, train=False)
tgt_data_loader, num_tgt_train = get_data_loader_weight(
params.tgt_dataset, params.dataset_root, params.batch_size, train=True, sampler=torch.utils.data.sampler.WeightedRandomSampler(
WEIGHTS, 1))
tgt_data_loader_eval, _ = get_data_loader_weight(
params.tgt_dataset, params.dataset_root, params.batch_size, train=False, sampler=torch.utils.data.sampler.WeightedRandomSampler(
WEIGHTS, 1))
# Cannot use the same sampler for both training and testing dataset
# load dann model
dann = init_model(net=MNISTmodel_plain(), restore=None)
# train dann model
print("Training dann model")
if not (dann.restored and params.dann_restore):
dann = train_dann(dann, params, src_data_loader, tgt_data_loader,
tgt_data_loader_eval, num_src_train, num_tgt_train, device, logger)