forked from selectstarofficial/segmentation-selectstar
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
182 lines (161 loc) · 7.85 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import torch
import os
import numpy as np
from tqdm import tqdm
import settings
from modules.dataloaders import make_data_loader
from modules.models.sync_batchnorm.replicate import patch_replication_callback
from modules.models.deeplab_xception import DeepLabv3_plus, get_1x_lr_params, get_10x_lr_params
from modules.utils.loss import SegmentationLosses
from modules.utils.calculate_weights import calculate_weigths_labels
# from modules.utils.lr_scheduler import LR_Scheduler
from modules.utils.saver import Saver
from modules.utils.summaries import TensorboardSummary
from modules.utils.metrics import Evaluator
class Trainer(object):
def __init__(self,):
# Define Saver
self.saver = Saver()
self.saver.save_experiment_config()
# Define Tensorboard Summary
self.summary = TensorboardSummary(self.saver.experiment_dir)
self.writer = self.summary.create_summary()
# Define Dataloader
kwargs = {'num_workers': settings.workers, 'pin_memory': True}
self.train_loader, self.val_loader, self.test_loader, self.nclass = make_data_loader(**kwargs)
# Define network
model = DeepLabv3_plus(nInputChannels=3, n_classes=self.nclass, os=16, pretrained=settings.pretrained, _print=True)
train_params = [{'params': get_1x_lr_params(model), 'lr': settings.lr},
{'params': get_10x_lr_params(model), 'lr': settings.lr}]
# Define Optimizer
# optimizer = torch.optim.SGD(train_params, momentum=settings.momentum,
# weight_decay=settings.weight_decay, nesterov=settings.nesterov)
optimizer = torch.optim.Adam(train_params)
# Define Criterion
# whether to use class balanced weights
if settings.use_balanced_weights:
classes_weights_path = os.path.join(settings.root_dir, settings.dataset+'_classes_weights.npy')
if os.path.isfile(classes_weights_path):
weight = np.load(classes_weights_path)
else:
weight = calculate_weigths_labels(settings.dataset, self.train_loader, self.nclass)
weight = torch.from_numpy(weight.astype(np.float32))
else:
weight = None
self.criterion = SegmentationLosses(weight=weight, cuda=settings.cuda).build_loss(mode=settings.loss_type)
self.model, self.optimizer = model, optimizer
# Define Evaluator
self.evaluator = Evaluator(self.nclass)
# Define lr scheduler
# self.scheduler = LR_Scheduler(settings.lr_scheduler, settings.lr,
# settings.epochs, len(self.train_loader))
# Using cuda
if settings.cuda:
self.model = torch.nn.DataParallel(self.model, device_ids=settings.gpu_ids)
patch_replication_callback(self.model)
self.model = self.model.cuda()
# Resuming checkpoint
self.best_pred = 0.0
if settings.resume:
if not os.path.isfile(settings.checkpoint):
raise RuntimeError("=> no checkpoint found at '{}'" .format(settings.checkpoint))
checkpoint = torch.load(settings.checkpoint)
settings.start_epoch = checkpoint['epoch']
if settings.cuda:
self.model.module.load_state_dict(checkpoint['state_dict'])
else:
self.model.load_state_dict(checkpoint['state_dict'])
if not settings.ft:
self.optimizer.load_state_dict(checkpoint['optimizer'])
self.best_pred = checkpoint['best_pred']
print("=> loaded checkpoint '{}' (epoch {})"
.format(settings.checkpoint, checkpoint['epoch']))
# Clear start epoch if fine-tuning
if settings.ft:
settings.start_epoch = 0
def training(self, epoch):
train_loss = 0.0
self.model.train()
tbar = tqdm(self.train_loader)
num_img_tr = len(self.train_loader)
for i, sample in enumerate(tbar):
image, target = sample['image'], sample['label']
if settings.cuda:
image, target = image.cuda(), target.cuda()
# self.scheduler(self.optimizer, i, epoch, self.best_pred)
self.optimizer.zero_grad()
output = self.model(image)
loss = self.criterion(output, target)
loss.backward()
self.optimizer.step()
train_loss += loss.item()
tbar.set_description('Train loss: %.3f' % (train_loss / (i + 1)))
self.writer.add_scalar('train/total_loss_iter', loss.item(), i + num_img_tr * epoch)
# Show 10 * 3 inference results each epoch
if i % (num_img_tr // 10) == 0:
global_step = i + num_img_tr * epoch
self.summary.visualize_image(self.writer, settings.dataset, image, target, output, global_step)
self.writer.add_scalar('train/total_loss_epoch', train_loss, epoch)
print('[Epoch: %d, numImages: %5d]' % (epoch, i * settings.batch_size + image.data.shape[0]))
print('Loss: %.3f' % train_loss)
if settings.no_val:
# save checkpoint every epoch
is_best = False
self.saver.save_checkpoint({
'epoch': epoch + 1,
'state_dict': self.model.module.state_dict(),
'optimizer': self.optimizer.state_dict(),
'best_pred': self.best_pred,
}, is_best)
def validation(self, epoch):
self.model.eval()
self.evaluator.reset()
tbar = tqdm(self.val_loader, desc='\r')
test_loss = 0.0
for i, sample in enumerate(tbar):
image, target = sample['image'], sample['label']
if settings.cuda:
image, target = image.cuda(), target.cuda()
with torch.no_grad():
output = self.model(image)
loss = self.criterion(output, target)
test_loss += loss.item()
tbar.set_description('Test loss: %.3f' % (test_loss / (i + 1)))
pred = output.data.cpu().numpy()
target = target.cpu().numpy()
pred = np.argmax(pred, axis=1)
# Add batch sample into evaluator
self.evaluator.add_batch(target, pred)
# Fast test during the training
Acc = self.evaluator.Pixel_Accuracy()
Acc_class = self.evaluator.Pixel_Accuracy_Class()
mIoU = self.evaluator.Mean_Intersection_over_Union()
FWIoU = self.evaluator.Frequency_Weighted_Intersection_over_Union()
self.writer.add_scalar('val/total_loss_epoch', test_loss, epoch)
self.writer.add_scalar('val/mIoU', mIoU, epoch)
self.writer.add_scalar('val/Acc', Acc, epoch)
self.writer.add_scalar('val/Acc_class', Acc_class, epoch)
self.writer.add_scalar('val/fwIoU', FWIoU, epoch)
print('Validation:')
print('[Epoch: %d, numImages: %5d]' % (epoch, i * settings.batch_size + image.data.shape[0]))
print("Acc:{}, Acc_class:{}, mIoU:{}, fwIoU: {}".format(Acc, Acc_class, mIoU, FWIoU))
print('Loss: %.3f' % test_loss)
new_pred = mIoU
if new_pred > self.best_pred:
is_best = True
self.best_pred = new_pred
self.saver.save_checkpoint({
'epoch': epoch + 1,
'state_dict': self.model.module.state_dict(),
'optimizer': self.optimizer.state_dict(),
'best_pred': self.best_pred,
}, is_best)
if __name__ == "__main__":
trainer = Trainer()
print('Starting Epoch:', settings.start_epoch)
print('Total Epoches:', settings.epochs)
for epoch in range(settings.start_epoch, settings.epochs):
trainer.training(epoch)
if not settings.no_val and epoch % settings.eval_interval == (settings.eval_interval - 1):
trainer.validation(epoch)
trainer.writer.close()