-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathHetSearchParallel.py
424 lines (380 loc) · 13.9 KB
/
HetSearchParallel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
#!/usr/bin/env python
import tempfile
from Bio.Align.Applications import MuscleCommandline
from Bio import AlignIO
from io import StringIO
from Bio.SeqRecord import SeqRecord
from Bio.Seq import Seq
from Bio.Alphabet import generic_dna
from scipy.stats import ttest_1samp
#import cogent.maths.stats.test as stats
from multiprocessing import Pool
import re
import sys
import os
class NucleotideScoringMatrix(object):
def __init__(self, match=2, mismatch=-2, gapscore=-1):
self.match = match
self.mismatch = mismatch
self.gapscore = gapscore
def score(self, one, two):
if one == two:
return self.match
if(one == '-' or two == '-'):
return self.gapscore
return self.mismatch
class HetInfo(object):
def __init__(self):
self.strain = ""
self.gene = ""
self.het = "" # NA,"TRUE","FALSE"
self.hetSeqs = {}
class HetSearch(object):
def __init__(self, projenv):
self.parameters = projenv.parameters
self.SortedSeqs = projenv.SortedSeqs
self.locusLengthRange = projenv.locusLengthRange
self.msgHandle = projenv
self.MinReadNum = 5
self.MinReadRatio = 0.2
self.MinVariantRatio = 0.2
self.HeteroPvalue = 0.001
self.MinHetVariants = 2
self.HetSeqs = {}
self.HetInfo = {}
def Run(self):
self.msgHandle.showMsg ('Searching for heterozygous loci...', "")
pool = Pool(self.parameters.Threads)
from time import time
##t0 = time()
MUSCLE = self.parameters.MuscleCMD
resqueue = []
for strain in self.SortedSeqs:
strainSeqs = self.SortedSeqs[strain]
for gene in strainSeqs:
if(gene == "unmapped"):
continue
geneSeqs = strainSeqs[gene]
lenRange = self.locusLengthRange[gene]
#hetInfo = HetIdent(gene,strain,geneSeqs,lenRange,MUSCLE,self.MinVariantRatio,self.HeteroPvalue,self.MinReadRatio,self.MinReadNum,self.MinHetVariants)
poolres = pool.apply_async(HetIdent,(gene,strain,geneSeqs,lenRange,MUSCLE,self.MinVariantRatio,
self.HeteroPvalue,self.MinReadRatio,self.MinReadNum,self.MinHetVariants))
resqueue.append(poolres)
pool.close()
pool.join()
#print ("Resqueue: %s" %(len(resqueue)))
for res in resqueue:
resinfo = res.get()
straininfo = {}
hetinfo = {}
#print ("strain: %s, gene: %s" %(resinfo.strain, resinfo.gene))
if(resinfo.strain in self.HetSeqs):
straininfo = self.HetSeqs[resinfo.strain]
if(resinfo.strain in self.HetInfo):
hetinfo = self.HetInfo[resinfo.strain]
if(resinfo.het == 1):
straininfo[resinfo.gene] = resinfo.hetSeqs
self.HetSeqs[resinfo.strain] = straininfo
hetinfo[resinfo.gene] = resinfo.het
self.HetInfo[resinfo.strain] = hetinfo
#t1 = time()
#print ("Time spends %.2fs." %(t1-t0))
self.msgHandle.showMsg ('done!')
return (True, None)
def HetIdent(gene, strain, geneSeqs, lenRange, MUSCLE, MinVariantRatio,
HeteroPvalue, MinReadRatio, MinReadNum, MinHetVariants):
filteredseqs = __SeqFilter(geneSeqs,lenRange,MinReadNum)
hetinfo = HetInfo()
hetinfo.strain = strain
hetinfo.gene = gene
if(filteredseqs != ""):
alignSeqs = __MuscleAlignment(filteredseqs, MUSCLE)
variantBases = __getVariants(alignSeqs, MinVariantRatio)
(isHet, index) = __isHetero(variantBases, HeteroPvalue, MinReadRatio)
if(isHet):
(seqN1, seqN2) = __getSeqGroups(alignSeqs,index)
seqs1 = __getSeqs(filteredseqs, seqN1)
seqs2 = __getSeqs(filteredseqs, seqN2)
aligns1 = __MuscleAlignment(seqs1, MUSCLE)
aligns2 = __MuscleAlignment(seqs2, MUSCLE)
cons1 = __AlignConsensus(aligns1)
cons2 = __AlignConsensus(aligns2)
gname1 = gene + "_allele1"
gname2 = gene + "_allele2"
seqrec1 = SeqRecord(Seq(cons1,generic_dna),id=strain,description=gname1)
seqrec2 = SeqRecord(Seq(cons2,generic_dna),id=strain,description=gname2)
isIdent = __isConsIden(seqrec1,seqrec2,MUSCLE,MinHetVariants)
if(isIdent):
#print ("strain:%s gene:%s not Hetero!" %(strain, gene))
hetinfo.het = 0
else:
#print ("strain:%s gene:%s is Hetero!" %(strain, gene))
hetinfo.het = 1
hetinfo.hetSeqs['seq1'] = seqrec1
hetinfo.hetSeqs['seq2'] = seqrec2
#return (2,hetSeqs)
else:
#print ("strain:%s gene:%s not Hetero!" %(strain, gene))
hetinfo.het = 0
#return (1,None)
else:
#print ("strain:%s gene:%s low coverage!" %(strain, gene))
hetinfo.het = -1
#return (0,None)
return hetinfo
def __isHetero(variantBases, maxpvalue, minreadratio):
recnum = len(variantBases)
if(recnum > 0):
#print ("variantsite is %s" %variantBases[0])
#print ("variantlength is %s" %(len(variantBases[0])))
scores = []
for i in range(recnum-1):
seq1 = variantBases[i]
seq2 = variantBases[i+1]
score = __alignscore(seq1, seq2)
scores.append(score)
#print ("seq1 %s - seq2 %s: %s" %(i, i+1, score))
isunique, scoreinfo = __minScore(scores, minreadratio)
if(isunique):
t_statistic, p_value = ttest_1samp(scoreinfo['scores'], scoreinfo['minscore'])
#print("minscore: %s\tminindex: %s\tpvalue: %s" %(scoreinfo['minscore'],scoreinfo['minindex'],p_value))
#t, p_value = stats.t_one_sample(scoreinfo['scores'], scoreinfo['minscore'], tails='low')
if(p_value <= maxpvalue):
#print ("Is hetero!")
return (True, scoreinfo['minindex'])
return (False, 0)
def __MuscleAlignment(sortedseqs, MUSCLE):
tmpfile = tempfile.NamedTemporaryFile('w',delete=False)
tmpname = tmpfile.name
for seq in sortedseqs:
tmpfile.write(seq.format("fasta"))
tmpfile.flush()
tmpfile.close()
cmdline = MuscleCommandline(MUSCLE,input=tmpname,gapopen=-20.0)
STDOUT, STDERR = cmdline()
os.remove(tmpname)
align = AlignIO.read(StringIO(STDOUT.decode('utf-8')), "fasta")
return align
def __SeqFilter(alnseqs,lenRange,minReadNum):
if(len(alnseqs) < minReadNum):return ""
seqs = []
for alnseq in alnseqs:
seq = alnseq.TrimPrimer()
if(len(seq) < lenRange['s1'] or len(seq) > lenRange['s2']) : continue
seqs.append(seq)
if(len(seqs) < minReadNum):return ""
return seqs
def __isConsIden(seq1,seq2,MUSCLE,MinHetVariants):
NuCoding = ['A','T','C','G']
conSeqs = []
conSeqs.append(seq1)
conSeqs.append(seq2)
align = __MuscleAlignment(conSeqs, MUSCLE)
trimSeq1, trimSeq2 = __trimGap(align[0].seq, align[1].seq)
if(str(trimSeq1) == str(trimSeq2)):
return True
vCount = 0
for i in range(len(trimSeq1)):
if(trimSeq1[i] != trimSeq2[i]):
if(trimSeq1[i] != '-' and trimSeq2[i] != '-'):
if((trimSeq1[i] in NuCoding) and (trimSeq2[i] in NuCoding)):
vCount += 1
elif((trimSeq1[i] in NuCoding) and (trimSeq2[i] not in NuCoding)):
bases = __IUPARevCambiguity(trimSeq2[i])
if(trimSeq1[i] not in bases):
vCount += 1
elif((trimSeq1[i] not in NuCoding) and (trimSeq2[i] in NuCoding)):
bases = __IUPARevCambiguity(trimSeq1[i])
if(trimSeq2[i] not in bases):
vCount += 1
vCount += __gapcount(trimSeq1)
vCount += __gapcount(trimSeq2)
if(vCount <= MinHetVariants):
return True
else:
return False
def __gapcount(seq):
gaps = re.findall(r'-(-+)',str(seq))
gapcount = 0
for i in range(len(gaps)):
gaplen = len(gaps[i]) + 1
gapcount += gaplen
return gapcount
def __getVariants(Aligns, ratio = 0.3):
"""Search variant nuclotide in the alignment"""
alignlen = Aligns.get_alignment_length()
lastvariant = 0
allvariant = []
variantBase = {}
recnum = len(Aligns)
for n in range(alignlen):
base_dict = {}
for i in range(recnum):
curbase = Aligns[i].seq[n]
upbase = curbase.upper()
if(curbase not in base_dict):
base_dict[curbase] = 1
else:
base_dict[curbase] += 1
filterbases = __baseFilter(base_dict, recnum, ratio)
if(len(filterbases) > 1):
for j in range(recnum):
curbase = Aligns[j].seq[n]
upbase = curbase.upper()
if(j in variantBase):
variantBase[j] += upbase
else:
variantBase[j] = upbase
return variantBase
def __baseFilter(basedict, seqnum, minratio):
filterdict = {}
for base in basedict:
ratio = basedict[base]/seqnum
if(ratio < minratio):
continue
filterdict[base] = basedict[base]
return filterdict
def __minScore(scores, ratio = 0.3):
numscores = len(scores)
startindex = int(numscores*ratio)
endindex = numscores - startindex
if(endindex == numscores):
endindex = numscores - 1
minscore = scores[startindex]
minindex = startindex
scoredict = {}
for i in range(startindex,endindex + 1):
if(scores[i] not in scoredict):
scoredict[scores[i]] = 1
else:
scoredict[scores[i]] += 1
if(minscore > scores[i]):
minindex = i
minscore = scores[i]
scores.pop(minindex)
scoreinfo = {}
isUnique = True
if(scoredict[minscore] > 1):
isUnique = False
scoreinfo['minscore'] = minscore
scoreinfo['minindex'] = minindex
scoreinfo['scores'] = scores
return(isUnique,scoreinfo)
def __getSeqGroups(alignSeqs, index):
seqcount = 0
groupA = []
groupB = []
for i in range(0,index+1):
groupA.append(alignSeqs[i].id)
for j in range(index+1,len(alignSeqs)):
groupB.append(alignSeqs[j].id)
return (groupA, groupB)
def __getSeqs(seqs, seqnames):
selSeqs = []
for i in range(len(seqs)):
if(seqs[i].id in seqnames):
selSeqs.append(seqs[i])
return selSeqs
def __alignscore(seq1, seq2, match = 2, mismatch=-2, gap=-1):
scorematrix = NucleotideScoringMatrix(match,mismatch,gap)
#(seq1t, seq2t) = trimgap(seq1, seq2)
score = 0
seqlen = len(seq1)
for i in range(seqlen):
matchscore = scorematrix.score(seq1[i],seq2[i])
score += matchscore
return score
def __AlignConsensus(alignment):
consensus = ''
con_len = alignment.get_alignment_length()
gapchar = '-'
#consuscut = parameters.ConsensusCut
for n in range(con_len):
base_dict = {}
num_bases = 0
for record in alignment._records:
if n < len(record.seq):
if record.seq[n] not in base_dict:
base_dict[record.seq[n]] = 1
else:
base_dict[record.seq[n]] += 1
num_bases = num_bases + 1
max_bases = []
max_size = 0
for base in base_dict:
if(base_dict[base] > max_size):
max_size = base_dict[base]
max_bases = [base]
elif(base_dict[base] == max_size):
max_bases.append(base)
if gapchar in max_bases: max_bases.remove(gapchar)
if(len(max_bases) == 1):
consensus += max_bases[0]
elif(len(max_bases) > 1):
base = __IUPACambiguity(sorted(max_bases))
consensus += base
return consensus
def __trimGap(seq1, seq2):
(seq1_s, seq1_e) = __gapRange(seq1)
(seq2_s, seq2_e) = __gapRange(seq2)
startpos = 0
endpos = 0
if(seq2_s > seq1_s):
startpos = seq2_s
else:
startpos = seq1_s
if(seq2_e < seq1_e):
endpos = seq2_e
else:
endpos = seq1_e
trimmed1 = seq1[startpos:endpos]
trimmed2 = seq2[startpos:endpos]
return (trimmed1, trimmed2)
def __gapRange(seq):
startpos = 0
endpos = 0
seqlen = len(seq)
i = 0
while(seq[i] == '-'):
startpos += 1
i += 1
revseq = seq.reverse_complement()
i = 0
pos = 0
while(revseq[i] == '-'):
pos += 1
i += 1
endpos = seqlen - pos
return (startpos, endpos)
def __IUPACambiguity(bases):
base = ''
if(bases == ['A','G']): base = 'R'
elif(bases == ['A','C']): base = 'M'
elif(bases == ['A','T']): base = 'W'
elif(bases == ['C','T']): base = 'Y'
elif(bases == ['C','G']): base = 'S'
elif(bases == ['G','T']): base = 'K'
elif(bases == ['A','C','G']): base = 'V'
elif(bases == ['A','C','T']): base = 'H'
elif(bases == ['A','G','T']): base = 'D'
elif(bases == ['C','G','T']): base = 'B'
elif(bases == ['A','T','C','G']): base = 'N'
else:
raise ValueError ("%s not defined!" %('/'.join(bases)))
return base
def __IUPARevCambiguity(base):
bases = []
if(base == 'R'): bases = ['A','G']
elif(base == 'M'): bases = ['A','C']
elif(base == 'W'): bases = ['A','T']
elif(base == 'Y'): bases = ['C','T']
elif(base == 'S'): bases = ['C','G']
elif(base == 'K'): bases = ['G','T']
elif(base == 'V'): bases = ['A','C','G']
elif(base == 'H'): bases = ['A','C','T']
elif(base == 'D'): bases = ['A','G','T']
elif(base == 'B'): bases = ['C','G','T']
elif(base == 'N'): bases = ['A','T','C','G']
else:
raise ValueError ("%s not defined!" %('/'.join(bases)))
return bases