forked from Sage-Bionetworks/PCBCDataExplorer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
expression_heatmap.R
820 lines (736 loc) · 31.4 KB
/
expression_heatmap.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
require(grid)
require(RColorBrewer)
require(memoise)
library("WGCNA")
library(flashClust)
lo = function(rown, coln, nrow, ncol, cellheight = NA, cellwidth = NA,
treeheight_col, treeheight_row, legend, annotation, annotation_colors, annotation_legend,
main, fontsize, fontsize_row, fontsize_col, ...){
# Get height of colnames and length of rownames
if(!is.null(coln[1])){
longest_coln = which.max(strwidth(coln, units = 'in'))
gp = list(fontsize = fontsize_col, ...)
coln_height = unit(1, "grobheight", textGrob(coln[longest_coln], rot = 90, gp = do.call(gpar, gp))) + unit(5, "bigpts")
}
else{
coln_height = unit(5, "bigpts")
}
if(!is.null(rown[1])){
longest_rown = which.max(strwidth(rown, units = 'in'))
gp = list(fontsize = fontsize_row, ...)
rown_width = unit(1, "grobwidth", textGrob(rown[longest_rown], gp = do.call(gpar, gp))) + unit(10, "bigpts")
}
else{
rown_width = unit(5, "bigpts")
}
gp = list(fontsize = fontsize, ...)
# Legend position
if(!is.na(legend[1])){
longest_break = which.max(nchar(names(legend)))
longest_break = unit(1.1, "grobwidth", textGrob(as.character(names(legend))[longest_break], gp = do.call(gpar, gp)))
title_length = unit(1.1, "grobwidth", textGrob("Scale", gp = gpar(fontface = "bold", ...)))
legend_width = unit(12, "bigpts") + longest_break * 1.2
legend_width = max(title_length, legend_width)
}
else{
legend_width = unit(0, "bigpts")
}
# Set main title height
if(is.na(main)){
main_height = unit(0, "npc")
}
else{
main_height = unit(1.5, "grobheight", textGrob(main, gp = gpar(fontsize = 1.3 * fontsize, ...)))
}
# Column annotations
if(!is.na(annotation[[1]][1])){
# Column annotation height
annot_height = unit(ncol(annotation) * (8 + 2) + 2, "bigpts")
# Width of the correponding legend
longest_ann = which.max(nchar(as.matrix(annotation)))
annot_legend_width = unit(1.2, "grobwidth", textGrob(as.matrix(annotation)[longest_ann], gp = gpar(...))) + unit(12, "bigpts")
if(!annotation_legend){
annot_legend_width = unit(0, "npc")
}
}
else{
annot_height = unit(0, "bigpts")
annot_legend_width = unit(0, "bigpts")
}
# Tree height
treeheight_col = unit(treeheight_col, "bigpts") + unit(5, "bigpts")
treeheight_row = unit(treeheight_row, "bigpts") + unit(5, "bigpts")
# Set cell sizes
if(is.na(cellwidth)){
matwidth = unit(1, "npc") - rown_width - legend_width - treeheight_row - annot_legend_width
}
else{
matwidth = unit(cellwidth * ncol, "bigpts")
}
if(is.na(cellheight)){
matheight = unit(1, "npc") - main_height - coln_height - treeheight_col - annot_height
}
else{
matheight = unit(cellheight * nrow, "bigpts")
}
# Produce layout()
pushViewport(viewport(layout = grid.layout(nrow = 5, ncol = 5, widths = unit.c(treeheight_row, matwidth, rown_width, legend_width, annot_legend_width), heights = unit.c(main_height, treeheight_col, annot_height, matheight, coln_height)), gp = do.call(gpar, gp)))
# Get cell dimensions
pushViewport(vplayout(4, 2))
cellwidth = convertWidth(unit(0:1, "npc"), "bigpts", valueOnly = T)[2] / ncol
cellheight = convertHeight(unit(0:1, "npc"), "bigpts", valueOnly = T)[2] / nrow
upViewport()
# Return minimal cell dimension in bigpts to decide if borders are drawn
mindim = min(cellwidth, cellheight)
return(mindim)
}
draw_dendrogram = function(hc, horizontal = T){
h = hc$height / max(hc$height) / 1.05
m = hc$merge
o = hc$order
n = length(o)
m[m > 0] = n + m[m > 0]
m[m < 0] = abs(m[m < 0])
dist = matrix(0, nrow = 2 * n - 1, ncol = 2, dimnames = list(NULL, c("x", "y")))
dist[1:n, 1] = 1 / n / 2 + (1 / n) * (match(1:n, o) - 1)
for(i in 1:nrow(m)){
dist[n + i, 1] = (dist[m[i, 1], 1] + dist[m[i, 2], 1]) / 2
dist[n + i, 2] = h[i]
}
draw_connection = function(x1, x2, y1, y2, y){
grid.lines(x = c(x1, x1), y = c(y1, y))
grid.lines(x = c(x2, x2), y = c(y2, y))
grid.lines(x = c(x1, x2), y = c(y, y))
}
if(horizontal){
for(i in 1:nrow(m)){
draw_connection(dist[m[i, 1], 1], dist[m[i, 2], 1], dist[m[i, 1], 2], dist[m[i, 2], 2], h[i])
}
}
else{
gr = rectGrob()
pushViewport(viewport(height = unit(1, "grobwidth", gr), width = unit(1, "grobheight", gr), angle = 90))
dist[, 1] = 1 - dist[, 1]
for(i in 1:nrow(m)){
draw_connection(dist[m[i, 1], 1], dist[m[i, 2], 1], dist[m[i, 1], 2], dist[m[i, 2], 2], h[i])
}
upViewport()
}
}
draw_matrix = function(matrix, border_color, fmat, fontsize_number,vp){
######
## modified to use raster to draw imagemaps
######
#n = nrow(matrix)
#m = ncol(matrix)
#x = (1:m)/m - 1/2/m
#y = 1 - ((1:n)/n - 1/2/n)
grid.raster(matrix,height=unit(1, "npc"),width=unit(1, "npc"),vp=vp,interpolate=FALSE)
# for(i in 1:m){
#grid.rect(x = x[i], y = y[1:n], width = 1/m, height = 1/n, gp = gpar(fill = matrix[,i], col = border_color))
# if(attr(fmat, "draw")){
# grid.text(x = x[i], y = y[1:n], label = fmat[, i], gp = gpar(col = "grey30", fontsize = fontsize_number))
# }
# }
}
draw_colnames = function(coln, ...){
m = length(coln)
x = (1:m)/m - 1/2/m
grid.text(coln, x = x, y = unit(0.90, "npc"), vjust = 0.5, hjust = 0, rot = 270, gp = gpar(...))
}
draw_rownames = function(rown, ...){
n = length(rown)
y = 1 - ((1:n)/n - 1/2/n)
grid.text(rown, x = unit(0.04, "npc"), y = y, vjust = 0.5, hjust = 0, gp = gpar(...))
}
draw_legend = function(color, breaks, legend, ...){
height = min(unit(1, "npc"), unit(150, "bigpts"))
pushViewport(viewport(x = 0, y = unit(1, "npc"), just = c(0, 1), height = height))
legend_pos = (legend - min(breaks)) / (max(breaks) - min(breaks))
breaks = (breaks - min(breaks)) / (max(breaks) - min(breaks))
h = breaks[-1] - breaks[-length(breaks)]
grid.rect(x = 0, y = breaks[-length(breaks)], width = unit(10, "bigpts"), height = h, hjust = 0, vjust = 0, gp = gpar(fill = color, col = "#FFFFFF00"))
grid.text(names(legend), x = unit(12, "bigpts"), y = legend_pos, hjust = 0, gp = gpar(...))
upViewport()
}
convert_annotations = function(annotation, annotation_colors){
new = annotation
for(i in 1:ncol(annotation)){
a = annotation[, i]
b = annotation_colors[[colnames(annotation)[i]]]
if(is.character(a) | is.factor(a)){
a = as.character(a)
if(length(setdiff(a, names(b))) > 0){
stop(sprintf("Factor levels on variable %s do not match with annotation_colors", colnames(annotation)[i]))
}
new[, i] = b[a]
}
else{
a = cut(a, breaks = 100)
new[, i] = colorRampPalette(b)(100)[a]
}
}
return(as.matrix(new))
}
draw_annotations = function(converted_annotations, border_color){
n = ncol(converted_annotations)
m = nrow(converted_annotations)
x = (1:m)/m - 1/2/m
y = cumsum(rep(8, n)) - 4 + cumsum(rep(2, n))
for(i in 1:m){
grid.rect(x = x[i], unit(y[1:n], "bigpts"), width = 1/m, height = unit(8, "bigpts"), gp = gpar(fill = converted_annotations[i, ], col = border_color))
}
}
draw_annotation_legend = function(annotation, annotation_colors, border_color, ...){
y = unit(1, "npc")
text_height = unit(1, "grobheight", textGrob("FGH", gp = gpar(...)))
for(i in names(annotation_colors)){
grid.text(i, x = 0, y = y, vjust = 1, hjust = 0, gp = gpar(fontface = "bold", ...))
y = y - 1.5 * text_height
if(is.character(annotation[, i]) | is.factor(annotation[, i])){
for(j in 1:length(annotation_colors[[i]])){
grid.rect(x = unit(0, "npc"), y = y, hjust = 0, vjust = 1, height = text_height, width = text_height, gp = gpar(col = border_color, fill = annotation_colors[[i]][j]))
grid.text(names(annotation_colors[[i]])[j], x = text_height * 1.3, y = y, hjust = 0, vjust = 1, gp = gpar(...))
y = y - 1.5 * text_height
}
}
else{
yy = y - 4 * text_height + seq(0, 1, 0.02) * 4 * text_height
h = 4 * text_height * 0.02
grid.rect(x = unit(0, "npc"), y = yy, hjust = 0, vjust = 1, height = h, width = text_height, gp = gpar(col = "#FFFFFF00", fill = colorRampPalette(annotation_colors[[i]])(50)))
txt = rev(range(grid.pretty(range(annotation[, i], na.rm = TRUE))))
yy = y - c(0, 3) * text_height
grid.text(txt, x = text_height * 1.3, y = yy, hjust = 0, vjust = 1, gp = gpar(...))
y = y - 4.5 * text_height
}
y = y - 1.5 * text_height
}
}
draw_main = function(text, ...){
grid.text(text, gp = gpar(fontface = "bold", ...))
}
vplayout = function(x, y){
return(viewport(layout.pos.row = x, layout.pos.col = y))
}
heatmap_motor = function(matrix, border_color, cellwidth, cellheight, tree_col, tree_row,
treeheight_col, treeheight_row, filename, width, height, breaks, color, legend,
annotation, annotation_colors, annotation_legend, main, fontsize, fontsize_row,
fontsize_col, fmat, fontsize_number, useRaster, drawRowD,
explicit_rownames=NULL, ...){
grid.newpage()
# Set layout
mindim = lo(coln = colnames(matrix), rown = rownames(matrix), nrow = nrow(matrix),
ncol = ncol(matrix), cellwidth = cellwidth, cellheight = cellheight,
treeheight_col = treeheight_col, treeheight_row = treeheight_row,
legend = legend, annotation = annotation, annotation_colors = annotation_colors,
annotation_legend = annotation_legend, main = main, fontsize = fontsize, fontsize_row = fontsize_row,
fontsize_col = fontsize_col, ...)
if(!is.na(filename)){
pushViewport(vplayout(1:5, 1:5))
if(is.na(height)){
height = convertHeight(unit(0:1, "npc"), "inches", valueOnly = T)[2]
}
if(is.na(width)){
width = convertWidth(unit(0:1, "npc"), "inches", valueOnly = T)[2]
}
# Get file type
r = regexpr("\\.[a-zA-Z]*$", filename)
if(r == -1) stop("Improper filename")
ending = substr(filename, r + 1, r + attr(r, "match.length"))
f = switch(ending,
pdf = function(x, ...) pdf(x, ...),
png = function(x, ...) png(x, units = "in", res = 300, ...),
jpeg = function(x, ...) jpeg(x, units = "in", res = 300, ...),
jpg = function(x, ...) jpeg(x, units = "in", res = 300, ...),
tiff = function(x, ...) tiff(x, units = "in", res = 300, compression = "lzw", ...),
bmp = function(x, ...) bmp(x, units = "in", res = 300, ...),
stop("File type should be: pdf, png, bmp, jpg, tiff")
)
# print(sprintf("height:%f width:%f", height, width))
f(filename, height = height, width = width)
heatmap_motor(matrix, cellwidth = cellwidth, cellheight = cellheight,
border_color = border_color, tree_col = tree_col, tree_row = tree_row,
treeheight_col = treeheight_col, treeheight_row = treeheight_row, breaks = breaks,
color = color, legend = legend, annotation = annotation, annotation_colors = annotation_colors,
annotation_legend = annotation_legend, filename = NA, main = main, fontsize = fontsize,
fontsize_row = fontsize_row, fontsize_col = fontsize_col, fmat = fmat,
fontsize_number = fontsize_number, useRaster = useRaster, drawRowD = drawRowD,
explicit_rownames=NULL, ...)
dev.off()
upViewport()
return()
}
# Omit border color if cell size is too small
if(mindim < 3) border_color = NA
# Draw title
if(!is.na(main)){
pushViewport(vplayout(1, 2))
draw_main(main, fontsize = 1.3 * fontsize, ...)
upViewport()
}
# Draw tree for the columns
if(!is.na(tree_col[[1]][1]) & treeheight_col != 0){
pushViewport(vplayout(2, 2))
draw_dendrogram(tree_col, horizontal = T)
upViewport()
}
# Draw tree for the rows
if( drawRowD == TRUE | nrow(matrix) <= 200 ){
if(!is.na(tree_row[[1]][1]) & treeheight_row != 0 ){
pushViewport(vplayout(4, 1))
draw_dendrogram(tree_row, horizontal = F)
upViewport()
}
}
# Draw matrix
vp = vplayout(4, 2)
draw_matrix(matrix, border_color, fmat, fontsize_number,vp=vp)
pushViewport(vp)
upViewport()
#Draw colnames
if(length(colnames(matrix)) != 0){
pushViewport(vplayout(5, 2))
pars = list(colnames(matrix), fontsize = fontsize_col, ...)
do.call(draw_colnames, pars)
upViewport()
}
#Draw rownames
if(length(rownames(matrix)) != 0 ){
if(is.null(explicit_rownames) == 'TRUE'){
explicit_rownames = rownames(matrix)
}
pushViewport(vplayout(4, 3))
pars = list(explicit_rownames, fontsize = fontsize_row, ...)
do.call(draw_rownames, pars)
upViewport()
}
# Draw annotation tracks
if(!is.na(annotation[[1]][1])){
pushViewport(vplayout(3, 2))
converted_annotation = convert_annotations(annotation, annotation_colors)
draw_annotations(converted_annotation, border_color)
upViewport()
}
# Draw annotation legend
if(!is.na(annotation[[1]][1]) & annotation_legend){
if( length(rownames(matrix)) <= 70 ) {
pushViewport(vplayout(4:5, 5))
}
else{
pushViewport(vplayout(3:5, 5))
}
draw_annotation_legend(annotation, annotation_colors, border_color, fontsize = fontsize, ...)
upViewport()
}
# Draw legend IF not drawing the ROW names
if(!is.na(legend[1])){
length(colnames(matrix))
if(length(rownames(matrix)) <= 70 ){
# pushViewport(vplayout(4:5, 4))
# DO NOTHING
}
else{
pushViewport(vplayout(3:5, 4))
draw_legend(color, breaks, legend, fontsize = fontsize, ...)
upViewport()
}
}
}
generate_breaks = function(x, n, center = F){
if(center){
m = max(abs(c(quantile(x, 0.01, na.rm = T), quantile(x, 0.99, na.rm = T))))
flog.debug(sprintf("Range: %f", m), name="server")
res = seq(-m, m, length.out = n + 1)
}
else{
res = seq(min(x, na.rm = T), max(x, na.rm = T), length.out = n + 1)
}
return(res)
}
scale_vec_colours = function(x, col = rainbow(10), breaks = NA){
return(col[as.numeric(cut(x, breaks = breaks, include.lowest = T))])
}
scale_colours = function(mat, col = rainbow(10), breaks = NA){
mat = as.matrix(mat)
return(matrix(scale_vec_colours(as.vector(mat), col = col, breaks = breaks), nrow(mat), ncol(mat), dimnames = list(rownames(mat), colnames(mat))))
}
cluster_mat = function(mat, distance, method, cor_method){
if(!(method %in% c("ward", "single", "complete", "average", "mcquitty", "median", "centroid"))){
stop("clustering method has to one form the list: 'ward', 'single', 'complete', 'average', 'mcquitty', 'median' or 'centroid'.")
}
if(!(distance[1] %in% c("correlation", "euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski")) & class(distance) != "dist"){
print(!(distance[1] %in% c("correlation", "euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski")) | class(distance) != "dist")
stop("distance has to be a dissimilarity structure as produced by dist or one measure form the list: 'correlation', 'euclidean', 'maximum', 'manhattan', 'canberra', 'binary', 'minkowski'")
}
if(distance[1] == "correlation"){
d = as.dist(1 - cor(t(mat),method=cor_method))
}
else{
if(class(distance) == "dist"){
d = distance
}
else{
d = dist(mat, method = distance)
}
}
return(flashClust(d, method = method)) #hclust replaced by flashClust from WCGNA (much faster than hclust)
}
#for faster rendering caching the computationally expensive functions
memoised_cluster_mat <- memoise(function(mat, distance, method, cor_method) cluster_mat(mat, distance, method,cor_method))
scale_rows = function(x){
m = apply(x, 1, mean, na.rm = T)
s = apply(x, 1, sd, na.rm = T)
return((x - m) / s)
}
scale_mat = function(mat, scale){
if(!(scale %in% c("none", "row", "column"))){
stop("scale argument shoud take values: 'none', 'row' or 'column'")
}
mat = switch(scale, none = mat, row = scale_rows(mat), column = t(scale_rows(t(mat))))
return(mat)
}
generate_annotation_colours = function(annotation, annotation_colors, drop){
if(is.na(annotation_colors)[[1]][1]){
annotation_colors = list()
}
count = 0
for(i in 1:ncol(annotation)){
if(is.character(annotation[, i]) | is.factor(annotation[, i])){
if (is.factor(annotation[, i]) & !drop){
count = count + length(levels(annotation[, i]))
}
else{
count = count + length(unique(annotation[, i]))
}
}
}
factor_colors = hsv((seq(0, 1, length.out = count + 1)[-1] +
0.2)%%1, 0.7, 0.95)
set.seed(3453)
for(i in 1:ncol(annotation)){
if(!(colnames(annotation)[i] %in% names(annotation_colors))){
if(is.character(annotation[, i]) | is.factor(annotation[, i])){
n = length(unique(annotation[, i]))
if (is.factor(annotation[, i]) & !drop){
n = length(levels(annotation[, i]))
}
ind = sample(1:length(factor_colors), n)
annotation_colors[[colnames(annotation)[i]]] = factor_colors[ind]
l = levels(as.factor(annotation[, i]))
l = l[l %in% unique(annotation[, i])]
if (is.factor(annotation[, i]) & !drop){
l = levels(annotation[, i])
}
names(annotation_colors[[colnames(annotation)[i]]]) = l
factor_colors = factor_colors[-ind]
}
else{
r = runif(1)
annotation_colors[[colnames(annotation)[i]]] = hsv(r, c(0.1, 1), 1)
}
}
}
return(annotation_colors)
}
kmeans_pheatmap = function(mat, k = min(nrow(mat), 150), sd_limit = NA, ...){
# Filter data
if(!is.na(sd_limit)){
s = apply(mat, 1, sd)
mat = mat[s > sd_limit, ]
}
# Cluster data
set.seed(1245678)
km = kmeans(mat, k, iter.max = 100)
mat2 = km$centers
# Compose rownames
t = table(km$cluster)
rownames(mat2) = sprintf("cl%s_size_%d", names(t), t)
# Draw heatmap
pheatmap(mat2, ...)
}
#' A function to draw clustered heatmaps.
#'
#' A function to draw clustered heatmaps where one has better control over some graphical
#' parameters such as cell size, etc.
#'
#' The function also allows to aggregate the rows using kmeans clustering. This is
#' advisable if number of rows is so big that R cannot handle their hierarchical
#' clustering anymore, roughly more than 1000. Instead of showing all the rows
#' separately one can cluster the rows in advance and show only the cluster centers.
#' The number of clusters can be tuned with parameter kmeans_k.
#'
#' @param mat numeric matrix of the values to be plotted.
#' @param color vector of colors used in heatmap.
#' @param kmeans_k the number of kmeans clusters to make, if we want to agggregate the
#' rows before drawing heatmap. If NA then the rows are not aggregated.
#' @param breaks a sequence of numbers that covers the range of values in mat and is one
#' element longer than color vector. Used for mapping values to colors. Useful, if needed
#' to map certain values to certain colors, to certain values. If value is NA then the
#' breaks are calculated automatically.
#' @param border_color color of cell borders on heatmap, use NA if no border should be
#' drawn.
#' @param cellwidth individual cell width in points. If left as NA, then the values
#' depend on the size of plotting window.
#' @param cellheight individual cell height in points. If left as NA,
#' then the values depend on the size of plotting window.
#' @param scale character indicating if the values should be centered and scaled in
#' either the row direction or the column direction, or none. Corresponding values are
#' \code{"row"}, \code{"column"} and \code{"none"}
#' @param cluster_rows boolean values determining if rows should be clustered,
#' @param cluster_cols boolean values determining if columns should be clustered.
#' @param clustering_distance_rows distance measure used in clustering rows. Possible
#' values are \code{"correlation"} for Pearson correlation and all the distances
#' supported by \code{\link{dist}}, such as \code{"euclidean"}, etc. If the value is none
#' of the above it is assumed that a distance matrix is provided.
#' @param clustering_distance_cols distance measure used in clustering columns. Possible
#' values the same as for clustering_distance_rows.
#' @param clustering_method clustering method used. Accepts the same values as
#' \code{\link{hclust}}.
#' @param treeheight_row the height of a tree for rows, if these are clustered.
#' Default value 50 points.
#' @param treeheight_col the height of a tree for columns, if these are clustered.
#' Default value 50 points.
#' @param legend logical to determine if legend should be drawn or not.
#' @param legend_breaks vector of breakpoints for the legend.
#' @param legend_labels vector of labels for the \code{legend_breaks}.
#' @param annotation data frame that specifies the annotations shown on top of the
#' columns. Each row defines the features for a specific column. The columns in the data
#' and rows in the annotation are matched using corresponding row and column names. Note
#' that color schemes takes into account if variable is continuous or discrete.
#' @param annotation_colors list for specifying annotation track colors manually. It is
#' possible to define the colors for only some of the features. Check examples for
#' details.
#' @param annotation_legend boolean value showing if the legend for annotation tracks
#' should be drawn.
#' @param drop_levels logical to determine if unused levels are also shown in the legend
#' @param show_rownames boolean specifying if column names are be shown.
#' @param show_colnames boolean specifying if column names are be shown.
#' @param main the title of the plot
#' @param fontsize base fontsize for the plot
#' @param fontsize_row fontsize for rownames (Default: fontsize)
#' @param fontsize_col fontsize for colnames (Default: fontsize)
#' @param display_numbers logical determining if the numeric values are also printed to
#' the cells.
#' @param number_format format strings (C printf style) of the numbers shown in cells.
#' For example "\code{\%.2f}" shows 2 decimal places and "\code{\%.1e}" shows exponential
#' notation (see more in \code{\link{sprintf}}).
#' @param fontsize_number fontsize of the numbers displayed in cells
#' @param filename file path where to save the picture. Filetype is decided by
#' the extension in the path. Currently following formats are supported: png, pdf, tiff,
#' bmp, jpeg. Even if the plot does not fit into the plotting window, the file size is
#' calculated so that the plot would fit there, unless specified otherwise.
#' @param width manual option for determining the output file width in inches.
#' @param height manual option for determining the output file height in inches.
#' @param \dots graphical parameters for the text used in plot. Parameters passed to
#' \code{\link{grid.text}}, see \code{\link{gpar}}.
#'
#' @return
#' Invisibly a list of components
#' \itemize{
#' \item \code{tree_row} the clustering of rows as \code{\link{hclust}} object
#' \item \code{tree_col} the clustering of columns as \code{\link{hclust}} object
#' \item \code{kmeans} the kmeans clustering of rows if parameter \code{kmeans_k} was
#' specified
#' }
#'
#' @author Raivo Kolde <rkolde@@gmail.com>
#' @examples
#' # Generate some data
#' test = matrix(rnorm(200), 20, 10)
#' test[1:10, seq(1, 10, 2)] = test[1:10, seq(1, 10, 2)] + 3
#' test[11:20, seq(2, 10, 2)] = test[11:20, seq(2, 10, 2)] + 2
#' test[15:20, seq(2, 10, 2)] = test[15:20, seq(2, 10, 2)] + 4
#' colnames(test) = paste("Test", 1:10, sep = "")
#' rownames(test) = paste("Gene", 1:20, sep = "")
#'
#' # Draw heatmaps
#' pheatmap(test)
#' pheatmap(test, kmeans_k = 2)
#' pheatmap(test, scale = "row", clustering_distance_rows = "correlation")
#' pheatmap(test, color = colorRampPalette(c("navy", "white", "firebrick3"))(50))
#' pheatmap(test, cluster_row = FALSE)
#' pheatmap(test, legend = FALSE)
#' pheatmap(test, display_numbers = TRUE)
#' pheatmap(test, display_numbers = TRUE, number_format = "%.1e")
#' pheatmap(test, cluster_row = FALSE, legend_breaks = -1:4, legend_labels = c("0",
#' "1e-4", "1e-3", "1e-2", "1e-1", "1"))
#' pheatmap(test, cellwidth = 15, cellheight = 12, main = "Example heatmap")
#' pheatmap(test, cellwidth = 15, cellheight = 12, fontsize = 8, filename = "test.pdf")
#'
#'
#' # Generate column annotations
#' annotation = data.frame(Var1 = factor(1:10 %% 2 == 0,
#' labels = c("Class1", "Class2")), Var2 = 1:10)
#' annotation$Var1 = factor(annotation$Var1, levels = c("Class1", "Class2", "Class3"))
#' rownames(annotation) = paste("Test", 1:10, sep = "")
#'
#' pheatmap(test, annotation = annotation)
#' pheatmap(test, annotation = annotation, annotation_legend = FALSE)
#' pheatmap(test, annotation = annotation, annotation_legend = FALSE, drop_levels = FALSE)
#'
#' # Specify colors
#' Var1 = c("navy", "darkgreen")
#' names(Var1) = c("Class1", "Class2")
#' Var2 = c("lightgreen", "navy")
#'
#' ann_colors = list(Var1 = Var1, Var2 = Var2)
#'
#' pheatmap(test, annotation = annotation, annotation_colors = ann_colors, main = "Example")
#'
#' # Specifying clustering from distance matrix
#' drows = dist(test, method = "minkowski")
#' dcols = dist(t(test), method = "minkowski")
#' pheatmap(test, clustering_distance_rows = drows, clustering_distance_cols = dcols)
#'
#' @export
memoised_pheatmap = function(mat, color = colorRampPalette(rev(brewer.pal(n = 7, name = "RdYlBu")))(100),
kmeans_k = NA, breaks = NA, border_color = "grey60", cellwidth = NA,
cellheight = NA, scale = "none", cluster_rows = TRUE, cluster_cols = TRUE,
clustering_distance_rows = "euclidean", clustering_distance_cols = "euclidean",
clustering_method = "complete", treeheight_row = ifelse(cluster_rows, 50, 0),
treeheight_col = ifelse(cluster_cols, 50, 0), legend = TRUE, legend_breaks = NA,
legend_labels = NA, annotation = NA, annotation_colors = NA, annotation_legend = TRUE,
drop_levels = TRUE, show_rownames = T, show_colnames = T, main = NA, fontsize = 10,
fontsize_row = fontsize, fontsize_col = fontsize, display_numbers = F, number_format = "%.2f",
fontsize_number = 0.8 * fontsize, filename = NA, width = NA, height = NA,
useRaster=FALSE, drawRowD=TRUE, cor_method = "pearson",
explicit_rownames = NULL, ...){
#time at which process started
start_time = proc.time()
# Preprocess matrix
mat = as.matrix(mat)
if(scale != "none"){
mat = scale_mat(mat, scale)
if(is.na(breaks)){
breaks = generate_breaks(mat, length(color), center = T)
}
}
# Kmeans
if(!is.na(kmeans_k)){
# Cluster data
km = kmeans(mat, kmeans_k, iter.max = 100)
mat = km$centers
# Compose rownames
t = table(km$cluster)
rownames(mat) = sprintf("cl%s_size_%d", names(t), t)
}
else{
km = NA
}
# Do clustering
if(cluster_rows & (nrow(mat) > 1)){
tree_row = memoised_cluster_mat(mat, distance = clustering_distance_rows, method = clustering_method, cor_method=cor_method)
#tree_row = cluster_mat(mat, distance = clustering_distance_rows, method = clustering_method)
mat = mat[tree_row$order, , drop = FALSE]
if(is.null(explicit_rownames) == FALSE){
explicit_rownames = explicit_rownames[tree_row$order]
}
}
else{
tree_row = NA
treeheight_row = 0
}
if(cluster_cols & (ncol(mat) > 1)){
tree_col = memoised_cluster_mat(t(mat), distance = clustering_distance_cols, method = clustering_method, cor_method=cor_method)
#tree_col = cluster_mat(t(mat), distance = clustering_distance_cols, method = clustering_method)
mat = mat[, tree_col$order, drop = FALSE]
}
else{
tree_col = NA
treeheight_col = 0
}
# Format numbers to be displayed in cells
if(display_numbers){
fmat = matrix(sprintf(number_format, mat), nrow = nrow(mat), ncol = ncol(mat))
attr(fmat, "draw") = TRUE
}
else{
fmat = matrix(NA, nrow = nrow(mat), ncol = ncol(mat))
attr(fmat, "draw") = FALSE
}
# Colors and scales
if(!is.na(legend_breaks[1]) & !is.na(legend_labels[1])){
if(length(legend_breaks) != length(legend_labels)){
stop("Lengths of legend_breaks and legend_labels must be the same")
}
}
if(is.na(breaks[1])){
breaks = generate_breaks(as.vector(mat), length(color), center=T)
}
if (legend & is.na(legend_breaks[1])) {
legend = grid.pretty(range(as.vector(breaks)))
names(legend) = legend
}
else if(legend & !is.na(legend_breaks[1])){
legend = legend_breaks[legend_breaks >= min(breaks) & legend_breaks <= max(breaks)]
if(!is.na(legend_labels[1])){
legend_labels = legend_labels[legend_breaks >= min(breaks) & legend_breaks <= max(breaks)]
names(legend) = legend_labels
}
else{
names(legend) = legend
}
}
else {
legend = NA
}
matcol <- scale_colours(mat, col = color, breaks = breaks)
# Preparing annotation colors
if(!is.na(annotation[[1]][1])){
annotation = annotation[colnames(mat), , drop = F]
annotation_colors = generate_annotation_colours(annotation, annotation_colors, drop = drop_levels)
}
if(!show_rownames){
rownames(matcol) = NULL
}
if(!show_colnames){
colnames(matcol) = NULL
}
# Draw heatmap
heatmap_motor(matcol, border_color = border_color, cellwidth = cellwidth, cellheight = cellheight,
treeheight_col = treeheight_col, treeheight_row = treeheight_row, tree_col = tree_col,
tree_row = tree_row, filename = filename, width = width, height = height, breaks = breaks,
color = color, legend = legend, annotation = annotation, annotation_colors = annotation_colors,
annotation_legend = annotation_legend, main = main, fontsize = fontsize,
fontsize_row = fontsize_row, fontsize_col = fontsize_col, fmat = fmat,
fontsize_number = fontsize_number, useRaster=useRaster, drawRowD=drawRowD,
explicit_rownames = explicit_rownames, ...)
#end time
end_time = proc.time()
total_time = end_time - start_time
invisible(list(mat=mat, matcol=matcol, tree_row = tree_row, tree_col = tree_col, kmeans = km, time=total_time))
#return(mat)
}
#######################
#Main Wrapper function
#######################
expHeatMap <- function(m, annotation = NA ,
clustering_distance_rows = "correlation",
clustering_distance_cols = "correlation",
cor_method="spearman",
clustering_method = "average",
scale = FALSE,...){
if(nrow(m) <= 2){
return(memoised_pheatmap(m, # cluster_rows=FALSE,
scale="none",
annotation = annotation,
drawRowD = FALSE,
border_color = NA,...))
}
else{
#do the clustering and heatmap
#scaling genes across experiments
if(scale == "TRUE"){
m <- t(scale(t(m)))
}
memoised_pheatmap(m,
scale="none",
annotation = annotation,
clustering_distance_rows = clustering_distance_rows,
clustering_distance_cols = clustering_distance_cols,
clustering_method = clustering_method,
border_color = NA,
drawRowD = FALSE,
cor_method=cor_method,...)
}
}