-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathserver.py
135 lines (103 loc) · 4.88 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import cv2 as cv
import imagezmq
from imutils import build_montages
import face_recognition
import openpyxl as op
import numpy
import datetime
import imutils
import pickle
import argparse
import os
import socket
import zmq
TCP_IP = '192.168.86.23' #IP address of the client
TCP_PORT = 5999 #portnumber
Message = 'DETECTED'
ap = argparse.ArgumentParser()
ap.add_argument("-e","--encodings",required=True,help="path to serialized db of facial encodings")
ap.add_argument("-o","--output",type=str,help="path to output video")
ap.add_argument("-y","--display",type=int,default=1,help="wheather or not to display output frame to screen")
ap.add_argument("-d","--detection-method",type=str,default="hog",help="face detection model to use: either hog or cnn")
ap.add_argument("-mW","--montageW",required=True,type=int,help="montage frame width")
ap.add_argument("-mH","--montageH",required=True,type=int,help="montage frame height")
args = vars(ap.parse_args())
#initialise the Imagehub object
imageHub = imagezmq.ImageHub()
# loading the known faces and embeddings
print("[INFO] loading encodings...")
data = pickle.loads(open(args["encodings"], "rb").read())
#Information regarding when a device was last active
lastActive = {}
lastActiveCheck = datetime.datetime.now()
mW = args["montageW"]
mH = args["montageH"]
name = "Unknown"
names = []
face_locations = []
face_encodings = []
totalframes = 1
totaldays = 0
m = 2
flag = 0
now= datetime.datetime.now()
today=now.day
month=now.month
face_cascade=cv.CascadeClassifier("haarcascade_frontalface_default.xml")
while True:
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((TCP_IP, TCP_PORT)) #Connecting to the client
totalframes = totalframes + 1
(rpiName , frame) = imageHub.recv_image() #Receiving image from the client
imageHub.send_reply(b'OK')
#cv.imshow("Video",frame)
if rpiName not in lastActive.keys():
print("[INFO] receiving data from {}....".format(rpiName))
lastActive[rpiName] = datetime.datetime.now()
rgb_frame = frame[: , : , ::-1] #Converting the frame from BGR to RGB
face_locations = face_recognition.face_locations(rgb_frame , model=args["detection_method"])
face_encodings = face_recognition.face_encodings(rgb_frame,face_locations) #encoding the grabbed frame
gray = cv.cvtColor(frame,cv.COLOR_BGR2GRAY) #Converting the frame from BGR to Gray
faces = face_cascade.detectMultiScale(gray, 1.05 , 5) #applying cascade classifier
for x,y,w,h in faces:
gray = cv.rectangle(gray,(x,y),(x+w,y+h),(0,255,0),3)
cv.imshow("Video",gray) #Feed display
for face_encoding in face_encodings:
data = pickle.loads(open(args["encodings"], "rb").read()) #Loading the already saved encodings
matches = face_recognition.compare_faces(data["encodings"],face_encoding,0.4) #Comparing the current frame encoding with the already saved encoding
if True in matches:
matchedIds = [i for (i,b) in enumerate(matches) if b]
for i in matchedIds:
name = data["names"][i] #grabbing the name of the encoding file with which the face is matched
print(name)
s.send(Message.encode()) #Sending the message to the client that the name is detected
data = s.recv(20).decode() #Reply of the sent request
s.close()
#Storing the necessary information in the excel sheet
book = op.load_workbook("INFORMATION.xlsx")
book1 = op.load_workbook("attendance.xlsx")
book2 = op.load_workbook("presentdetails.xlsx")
sheet = book.active #INFORMATION SHEET
sheet1 = book1.active #IN-TIME , OUT-TIME SHEET
sheet2 = book2.active #PRESENT-DAYS COUNT SHEET
for j in range(2,40):
if sheet.cell( row = j ,column = 2 ).value == name:
sheet1.cell(row = m , column = 2).value = name
sheet1.cell(row = m , column = 1).value = sheet.cell(row = j , column = 1).value
sheet1.cell(row = m , column = 3).value = sheet.cell(row = j , column = 3).value
sheet1.cell(row = m , column = 4).value = datetime.datetime.now()
m = m + 1
sheet2.cell( row = j , column = int(today) + 4 ).value = "PRESENT"
for k in range (4,40):
if sheet2.cell(row = j , column = k).value == "PRESENT":
totaldays = totaldays + 1
sheet2.cell(row = j , column = 3).value = totaldays
break
book1.save("attendance.xlsx") #Saving the files
book2.save("presentdetails.xlsx")
totaldays = 0
name = "Unknown"
flag = 0
key = cv.waitKey(1)
if key == ord('q'):
break