简体中文 | English
🤖 PaddlePaddle Visual Transformers (PaddleViT
或 PPViT
) 为开发者提供视觉领域的高性能Transformer模型集合的实现。 多数模型基于Visual Transformers, Visual Attentions, 以及 MLPs等实现。 此外,PaddleViT集成了PaddlePaddle 2.1+中常用的layers, utilities, optimizers, schedulers, 数据增强, 以及训练/评估脚本等。 此项目旨在通过提供SOTA ViT和MLP模型等完整训练/评估程序,从而为用户提供更简便的方式去使用CV领域的前沿算法。
🤖 PaddleViT 为多项视觉任务提供模型和工具,例如分类, 目标检测,语义分割,GAN等领域。每个模型架构均在独立的Python模块中定义,以便于用户能够快速的实现研究实验。同时,提供了模型的预训练权重,可以用于您自己的数据集进行微调。PaddleViT还集成了常用的工具和模块,用于自定义数据集、数据预处理,性能评估以及DDP等。
🤖 PaddleViT 由深度学习框架 PaddlePaddle提供支持, 我们同时在Paddle AI Studio上提供了项目教程. 对于新用户能够简单易操作。
PaddleViT 提供了多项视觉任务的模型和工具,请访问以下链接以获取详细信息:
- PaddleViT-Cls 用于 图像分类
- PaddleViT-Det 用于 目标检测
- PaddleViT-Seg 用于 语义分割
- PaddleViT-GAN 用于 生成对抗模型
我们同时提供对应教程:
- Notebooks (即将更新)
- Online Course (即将更新)
-
SOTA模型的实现与使用方法
- 提供多项CV任务的SOTA transformer 模型
- 提供高性能的数据处理和训练方法
- 持续推出最新的SOTA算法的实现
-
易于使用的工具
- 通过简单配置即可实现对模型变体的实现
- 将实用功能与工具进行模块化设计
- 对于教育者和从业者的使用低门槛
- 所有模型以统一框架实现
-
符合用户的自定义需求
- 提供每个模型的实现的最佳实践
- 提供方便用户调整自定义配置的模型实现
- 模型文件可以独立使用以便于用户快速复现算法
-
高性能
- 支持DDP (多进程训练/评估,其中每个进程在单个GPU上运行)
- 支持混合精度 support (AMP)训练策略
- ViT (from Google), released with paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
- DeiT (from Facebook and Sorbonne), released with paper Training data-efficient image transformers & distillation through attention, by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
- Swin Transformer (from Microsoft), released with paper Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
- VOLO (from Sea AI Lab and NUS), released with paper VOLO: Vision Outlooker for Visual Recognition, by Li Yuan, Qibin Hou, Zihang Jiang, Jiashi Feng, Shuicheng Yan.
- CSwin Transformer (from USTC and Microsoft), released with paper CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows , by Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Weiming Zhang, Nenghai Yu, Lu Yuan, Dong Chen, Baining Guo.
- CaiT (from Facebook and Sorbonne), released with paper Going deeper with Image Transformers, by Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, Hervé Jégou.
- PVTv2 (from NJU/HKU/NJUST/IIAI/SenseTime), released with paper PVTv2: Improved Baselines with Pyramid Vision Transformer, by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
- Shuffle Transformer (from Tencent), released with paper Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer, by Zilong Huang, Youcheng Ben, Guozhong Luo, Pei Cheng, Gang Yu, Bin Fu.
- T2T-ViT (from NUS and YITU), released with paper Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet , by Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zihang Jiang, Francis EH Tay, Jiashi Feng, Shuicheng Yan.
- CrossViT (from IBM), released with paper CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification, by Chun-Fu Chen, Quanfu Fan, Rameswar Panda.
- BEiT (from Microsoft Research), released with paper BEiT: BERT Pre-Training of Image Transformers, by Hangbo Bao, Li Dong, Furu Wei.
- Focal Transformer (from Microsoft), released with paper Focal Self-attention for Local-Global Interactions in Vision Transformers, by Jianwei Yang, Chunyuan Li, Pengchuan Zhang, Xiyang Dai, Bin Xiao, Lu Yuan and Jianfeng Gao.
- Mobile-ViT (from Apple), released with paper MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer, by Sachin Mehta, Mohammad Rastegari.
- MLP-Mixer (from Google), released with paper MLP-Mixer: An all-MLP Architecture for Vision, by Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, Alexey Dosovitskiy
- ResMLP (from Facebook/Sorbonne/Inria/Valeo), released with paper ResMLP: Feedforward networks for image classification with data-efficient training, by Hugo Touvron, Piotr Bojanowski, Mathilde Caron, Matthieu Cord, Alaaeldin El-Nouby, Edouard Grave, Gautier Izacard, Armand Joulin, Gabriel Synnaeve, Jakob Verbeek, Hervé Jégou.
- gMLP (from Google), released with paper Pay Attention to MLPs, by Hanxiao Liu, Zihang Dai, David R. So, Quoc V. Le.
- FF Only (from Oxford), released with paper Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet, by Luke Melas-Kyriazi.
- RepMLP (from BNRist/Tsinghua/MEGVII/Aberystwyth), released with paper RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition, by Xiaohan Ding, Chunlong Xia, Xiangyu Zhang, Xiaojie Chu, Jungong Han, Guiguang Ding.
- CycleMLP (from HKU/SenseTime), released with paper CycleMLP: A MLP-like Architecture for Dense Prediction, by Shoufa Chen, Enze Xie, Chongjian Ge, Ding Liang, Ping Luo.
- ConvMixer (from Anonymous), released with Patches Are All You Need?, by Anonymous.
- ConvMLP (from UO/UIUC/PAIR), released with ConvMLP: Hierarchical Convolutional MLPs for Vision, by Jiachen Li, Ali Hassani, Steven Walton, Humphrey Shi.
- ViP (from National University of Singapore), released with Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition, by Qibin Hou and Zihang Jiang and Li Yuan and Ming-Ming Cheng and Shuicheng Yan and Jiashi Feng.
- HaloNet, (from Google), released with paper Scaling Local Self-Attention for Parameter Efficient Visual Backbones, by Ashish Vaswani, Prajit Ramachandran, Aravind Srinivas, Niki Parmar, Blake Hechtman, Jonathon Shlens.
- XCiT (from Facebook/Inria/Sorbonne), released with paper XCiT: Cross-Covariance Image Transformers, by Alaaeldin El-Nouby, Hugo Touvron, Mathilde Caron, Piotr Bojanowski, Matthijs Douze, Armand Joulin, Ivan Laptev, Natalia Neverova, Gabriel Synnaeve, Jakob Verbeek, Hervé Jegou.
- CvT (from McGill/Microsoft), released with paper CvT: Introducing Convolutions to Vision Transformers, by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang
- PiT (from NAVER/Sogan University), released with paper Rethinking Spatial Dimensions of Vision Transformers, by Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Junsuk Choe, Seong Joon Oh.
- HVT (from Monash University), released with paper Scalable Vision Transformers with Hierarchical Pooling, by Zizheng Pan, Bohan Zhuang, Jing Liu, Haoyu He, Jianfei Cai.
- DynamicViT (from Tsinghua/UCLA/UW), released with paper DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification, by Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, Cho-Jui Hsieh.
- DETR (from Facebook), released with paper End-to-End Object Detection with Transformers, by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
- Swin Transformer (from Microsoft), released with paper Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
- PVTv2 (from NJU/HKU/NJUST/IIAI/SenseTime), released with paper PVTv2: Improved Baselines with Pyramid Vision Transformer, by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
- Focal Transformer (from Microsoft), released with paper Focal Self-attention for Local-Global Interactions in Vision Transformers, by Jianwei Yang, Chunyuan Li, Pengchuan Zhang, Xiyang Dai, Bin Xiao, Lu Yuan and Jianfeng Gao.
- UP-DETR (from Tencent), released with paper UP-DETR: Unsupervised Pre-training for Object Detection with Transformers, by Zhigang Dai, Bolun Cai, Yugeng Lin, Junying Chen.
- SETR (from Fudan/Oxford/Surrey/Tencent/Facebook), released with paper Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers, by Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu, Zekun Luo, Yabiao Wang, Yanwei Fu, Jianfeng Feng, Tao Xiang, Philip H.S. Torr, Li Zhang.
- DPT (from Intel), released with paper Vision Transformers for Dense Prediction, by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
- Swin Transformer (from Microsoft), released with paper Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
- Segmenter (from Inria), realeased with paper Segmenter: Transformer for Semantic Segmentation, by Robin Strudel, Ricardo Garcia, Ivan Laptev, Cordelia Schmid.
- Trans2seg (from HKU/Sensetime/NJU), released with paper Segmenting Transparent Object in the Wild with Transformer, by Enze Xie, Wenjia Wang, Wenhai Wang, Peize Sun, Hang Xu, Ding Liang, Ping Luo.
- SegFormer (from HKU/NJU/NVIDIA/Caltech), released with paper SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers, by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
- CSwin Transformer (from USTC and Microsoft), released with paper [CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows
- FTN (from Baidu), released with paper Fully Transformer Networks for Semantic Image Segmentation, by Sitong Wu, Tianyi Wu, Fangjian Lin, Shengwei Tian, Guodong Guo.
- Shuffle Transformer (from Tencent), released with paper Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer, by Zilong Huang, Youcheng Ben, Guozhong Luo, Pei Cheng, Gang Yu, Bin Fu
- Focal Transformer (from Microsoft), released with paper Focal Self-attention for Local-Global Interactions in Vision Transformers, by Jianwei Yang, Chunyuan Li, Pengchuan Zhang, Xiyang Dai, Bin Xiao, Lu Yuan and Jianfeng Gao. ](https://arxiv.org/abs/2107.00652), by Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Weiming Zhang, Nenghai Yu, Lu Yuan, Dong Chen, Baining Guo.
- TransGAN (from Seoul National University and NUUA), released with paper TransGAN: Two Pure Transformers Can Make One Strong GAN, and That Can Scale Up, by Yifan Jiang, Shiyu Chang, Zhangyang Wang.
- Styleformer (from Facebook and Sorbonne), released with paper Styleformer: Transformer based Generative Adversarial Networks with Style Vector, by Jeeseung Park, Younggeun Kim.
- ViTGAN (from UCSD/Google), released with paper ViTGAN: Training GANs with Vision Transformers, by Kwonjoon Lee, Huiwen Chang, Lu Jiang, Han Zhang, Zhuowen Tu, Ce Liu.
- Linux/MacOS/Windows
- Python 3.6/3.7
- PaddlePaddle 2.1.0+
- CUDA10.2+
注意: 建议安装最新版本的 PaddlePaddle 以避免训练PaddleViT时出现一些 CUDA 错误。 PaddlePaddle稳定版安装请参考链接 , PaddlePaddle开发版安装请参考链接.
-
创建Conda虚拟环境并激活.
conda create -n paddlevit python=3.7 -y conda activate paddlevit
-
按照官方说明安装 PaddlePaddle, e.g.,
conda install paddlepaddle-gpu==2.1.2 cudatoolkit=10.2 --channel https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/Paddle/
注意: 请根据您的环境更改 paddlepaddle 版本 和 cuda 版本.
-
安装依赖项.
- 通用的依赖项:
pip install yacs, yaml
- 分割需要的依赖项:
pip install cityscapesScripts, detail
- GAN需要的依赖项:
pip install lmdb
- 通用的依赖项:
-
从GitHub克隆项目
git clone https://github.com/BR-IDL/PaddleViT.git
Model | Acc@1 | Acc@5 | #Params | FLOPs | Image Size | Crop pct | Interp | Link |
---|---|---|---|---|---|---|---|---|
vit_base_patch32_224 | 80.68 | 95.61 | 88.2M | 4.4G | 224 | 0.875 | bicubic | google/baidu(ubyr) |
vit_base_patch32_384 | 83.35 | 96.84 | 88.2M | 12.7G | 384 | 1.0 | bicubic | google/baidu(3c2f) |
vit_base_patch16_224 | 84.58 | 97.30 | 86.4M | 17.0G | 224 | 0.875 | bicubic | google/baidu(qv4n) |
vit_base_patch16_384 | 85.99 | 98.00 | 86.4M | 49.8G | 384 | 1.0 | bicubic | google/baidu(wsum) |
vit_large_patch16_224 | 85.81 | 97.82 | 304.1M | 59.9G | 224 | 0.875 | bicubic | google/baidu(1bgk) |
vit_large_patch16_384 | 87.08 | 98.30 | 304.1M | 175.9G | 384 | 1.0 | bicubic | google/baidu(5t91) |
vit_large_patch32_384 | 81.51 | 96.09 | 306.5M | 44.4G | 384 | 1.0 | bicubic | google/baidu(ieg3) |
swin_t_224 | 81.37 | 95.54 | 28.3M | 4.4G | 224 | 0.9 | bicubic | google/baidu(h2ac) |
swin_s_224 | 83.21 | 96.32 | 49.6M | 8.6G | 224 | 0.9 | bicubic | google/baidu(ydyx) |
swin_b_224 | 83.60 | 96.46 | 87.7M | 15.3G | 224 | 0.9 | bicubic | google/baidu(h4y6) |
swin_b_384 | 84.48 | 96.89 | 87.7M | 45.5G | 384 | 1.0 | bicubic | google/baidu(7nym) |
swin_b_224_22kto1k | 85.27 | 97.56 | 87.7M | 15.3G | 224 | 0.9 | bicubic | google/baidu(6ur8) |
swin_b_384_22kto1k | 86.43 | 98.07 | 87.7M | 45.5G | 384 | 1.0 | bicubic | google/baidu(9squ) |
swin_l_224_22kto1k | 86.32 | 97.90 | 196.4M | 34.3G | 224 | 0.9 | bicubic | google/baidu(nd2f) |
swin_l_384_22kto1k | 87.14 | 98.23 | 196.4M | 100.9G | 384 | 1.0 | bicubic | google/baidu(5g5e) |
deit_tiny_distilled_224 | 74.52 | 91.90 | 5.9M | 1.1G | 224 | 0.875 | bicubic | google/baidu(rhda) |
deit_small_distilled_224 | 81.17 | 95.41 | 22.4M | 4.3G | 224 | 0.875 | bicubic | google/baidu(pv28) |
deit_base_distilled_224 | 83.32 | 96.49 | 87.2M | 17.0G | 224 | 0.875 | bicubic | google/baidu(5f2g) |
deit_base_distilled_384 | 85.43 | 97.33 | 87.2M | 49.9G | 384 | 1.0 | bicubic | google/baidu(qgj2) |
volo_d1_224 | 84.12 | 96.78 | 26.6M | 6.6G | 224 | 1.0 | bicubic | google/baidu(xaim) |
volo_d1_384 | 85.24 | 97.21 | 26.6M | 19.5G | 384 | 1.0 | bicubic | google/baidu(rr7p) |
volo_d2_224 | 85.11 | 97.19 | 58.6M | 13.7G | 224 | 1.0 | bicubic | google/baidu(d82f) |
volo_d2_384 | 86.04 | 97.57 | 58.6M | 40.7G | 384 | 1.0 | bicubic | google/baidu(9cf3) |
volo_d3_224 | 85.41 | 97.26 | 86.2M | 19.8G | 224 | 1.0 | bicubic | google/baidu(a5a4) |
volo_d3_448 | 86.50 | 97.71 | 86.2M | 80.3G | 448 | 1.0 | bicubic | google/baidu(uudu) |
volo_d4_224 | 85.89 | 97.54 | 192.8M | 42.9G | 224 | 1.0 | bicubic | google/baidu(vcf2) |
volo_d4_448 | 86.70 | 97.85 | 192.8M | 172.5G | 448 | 1.0 | bicubic | google/baidu(nd4n) |
volo_d5_224 | 86.08 | 97.58 | 295.3M | 70.6G | 224 | 1.0 | bicubic | google/baidu(ymdg) |
volo_d5_448 | 86.92 | 97.88 | 295.3M | 283.8G | 448 | 1.0 | bicubic | google/baidu(qfcc) |
volo_d5_512 | 87.05 | 97.97 | 295.3M | 371.3G | 512 | 1.15 | bicubic | google/baidu(353h) |
cswin_tiny_224 | 82.81 | 96.30 | 22.3M | 4.2G | 224 | 0.9 | bicubic | google/baidu(4q3h) |
cswin_small_224 | 83.60 | 96.58 | 34.6M | 6.5G | 224 | 0.9 | bicubic | google/baidu(gt1a) |
cswin_base_224 | 84.23 | 96.91 | 77.4M | 14.6G | 224 | 0.9 | bicubic | google/baidu(wj8p) |
cswin_base_384 | 85.51 | 97.48 | 77.4M | 43.1G | 384 | 1.0 | bicubic | google/baidu(rkf5) |
cswin_large_224 | 86.52 | 97.99 | 173.3M | 32.5G | 224 | 0.9 | bicubic | google/baidu(b5fs) |
cswin_large_384 | 87.49 | 98.35 | 173.3M | 96.1G | 384 | 1.0 | bicubic | google/baidu(6235) |
cait_xxs24_224 | 78.38 | 94.32 | 11.9M | 2.2G | 224 | 1.0 | bicubic | google/baidu(j9m8) |
cait_xxs36_224 | 79.75 | 94.88 | 17.2M | 33.1G | 224 | 1.0 | bicubic | google/baidu(nebg) |
cait_xxs24_384 | 80.97 | 95.64 | 11.9M | 6.8G | 384 | 1.0 | bicubic | google/baidu(2j95) |
cait_xxs36_384 | 82.20 | 96.15 | 17.2M | 10.1G | 384 | 1.0 | bicubic | google/baidu(wx5d) |
cait_s24_224 | 83.45 | 96.57 | 46.8M | 8.7G | 224 | 1.0 | bicubic | google/baidu(m4pn) |
cait_xs24_384 | 84.06 | 96.89 | 26.5M | 15.1G | 384 | 1.0 | bicubic | google/baidu(scsv) |
cait_s24_384 | 85.05 | 97.34 | 46.8M | 26.5G | 384 | 1.0 | bicubic | google/baidu(dnp7) |
cait_s36_384 | 85.45 | 97.48 | 68.1M | 39.5G | 384 | 1.0 | bicubic | google/baidu(e3ui) |
cait_m36_384 | 86.06 | 97.73 | 270.7M | 156.2G | 384 | 1.0 | bicubic | google/baidu(r4hu) |
cait_m48_448 | 86.49 | 97.75 | 355.8M | 287.3G | 448 | 1.0 | bicubic | google/baidu(imk5) |
pvtv2_b0 | 70.47 | 90.16 | 3.7M | 0.6G | 224 | 0.875 | bicubic | google/baidu(dxgb) |
pvtv2_b1 | 78.70 | 94.49 | 14.0M | 2.1G | 224 | 0.875 | bicubic | google/baidu(2e5m) |
pvtv2_b2 | 82.02 | 95.99 | 25.4M | 4.0G | 224 | 0.875 | bicubic | google/baidu(are2) |
pvtv2_b2_linear | 82.06 | 96.04 | 22.6M | 3.9G | 224 | 0.875 | bicubic | google/baidu(a4c8) |
pvtv2_b3 | 83.14 | 96.47 | 45.2M | 6.8G | 224 | 0.875 | bicubic | google/baidu(nc21) |
pvtv2_b4 | 83.61 | 96.69 | 62.6M | 10.0G | 224 | 0.875 | bicubic | google/baidu(tthf) |
pvtv2_b5 | 83.77 | 96.61 | 82.0M | 11.5G | 224 | 0.875 | bicubic | google/baidu(9v6n) |
shuffle_vit_tiny | 82.39 | 96.05 | 28.5M | 4.6G | 224 | 0.875 | bicubic | google/baidu(8a1i) |
shuffle_vit_small | 83.53 | 96.57 | 50.1M | 8.8G | 224 | 0.875 | bicubic | google/baidu(xwh3) |
shuffle_vit_base | 83.95 | 96.91 | 88.4M | 15.5G | 224 | 0.875 | bicubic | google/baidu(1gsr) |
t2t_vit_7 | 71.68 | 90.89 | 4.3M | 1.0G | 224 | 0.9 | bicubic | google/baidu(1hpa) |
t2t_vit_10 | 75.15 | 92.80 | 5.8M | 1.3G | 224 | 0.9 | bicubic | google/baidu(ixug) |
t2t_vit_12 | 76.48 | 93.49 | 6.9M | 1.5G | 224 | 0.9 | bicubic | google/baidu(qpbb) |
t2t_vit_14 | 81.50 | 95.67 | 21.5M | 4.4G | 224 | 0.9 | bicubic | google/baidu(c2u8) |
t2t_vit_19 | 81.93 | 95.74 | 39.1M | 7.8G | 224 | 0.9 | bicubic | google/baidu(4in3) |
t2t_vit_24 | 82.28 | 95.89 | 64.0M | 12.8G | 224 | 0.9 | bicubic | google/baidu(4in3) |
t2t_vit_t_14 | 81.69 | 95.85 | 21.5M | 4.4G | 224 | 0.9 | bicubic | google/baidu(4in3) |
t2t_vit_t_19 | 82.44 | 96.08 | 39.1M | 7.9G | 224 | 0.9 | bicubic | google/baidu(mier) |
t2t_vit_t_24 | 82.55 | 96.07 | 64.0M | 12.9G | 224 | 0.9 | bicubic | google/baidu(6vxc) |
t2t_vit_14_384 | 83.34 | 96.50 | 21.5M | 13.0G | 384 | 1.0 | bicubic | google/baidu(r685) |
cross_vit_tiny_224 | 73.20 | 91.90 | 6.9M | 1.3G | 224 | 0.875 | bicubic | google/baidu(scvb) |
cross_vit_small_224 | 81.01 | 95.33 | 26.7M | 5.2G | 224 | 0.875 | bicubic | google/baidu(32us) |
cross_vit_base_224 | 82.12 | 95.87 | 104.7M | 20.2G | 224 | 0.875 | bicubic | google/baidu(jj2q) |
cross_vit_9_224 | 73.78 | 91.93 | 8.5M | 1.6G | 224 | 0.875 | bicubic | google/baidu(mjcb) |
cross_vit_15_224 | 81.51 | 95.72 | 27.4M | 5.2G | 224 | 0.875 | bicubic | google/baidu(n55b) |
cross_vit_18_224 | 82.29 | 96.00 | 43.1M | 8.3G | 224 | 0.875 | bicubic | google/baidu(xese) |
cross_vit_9_dagger_224 | 76.92 | 93.61 | 8.7M | 1.7G | 224 | 0.875 | bicubic | google/baidu(58ah) |
cross_vit_15_dagger_224 | 82.23 | 95.93 | 28.1M | 5.6G | 224 | 0.875 | bicubic | google/baidu(qwup) |
cross_vit_18_dagger_224 | 82.51 | 96.03 | 44.1M | 8.7G | 224 | 0.875 | bicubic | google/baidu(qtw4) |
cross_vit_15_dagger_384 | 83.75 | 96.75 | 28.1M | 16.4G | 384 | 1.0 | bicubic | google/baidu(w71e) |
cross_vit_18_dagger_384 | 84.17 | 96.82 | 44.1M | 25.8G | 384 | 1.0 | bicubic | google/baidu(99b6) |
beit_base_patch16_224_pt22k | 85.21 | 97.66 | 87M | 12.7G | 224 | 0.9 | bicubic | google/baidu(fshn) |
beit_base_patch16_384_pt22k | 86.81 | 98.14 | 87M | 37.3G | 384 | 1.0 | bicubic | google/baidu(arvc) |
beit_large_patch16_224_pt22k | 87.48 | 98.30 | 304M | 45.0G | 224 | 0.9 | bicubic | google/baidu(2ya2) |
beit_large_patch16_384_pt22k | 88.40 | 98.60 | 304M | 131.7G | 384 | 1.0 | bicubic | google/baidu(qtrn) |
beit_large_patch16_512_pt22k | 88.60 | 98.66 | 304M | 234.0G | 512 | 1.0 | bicubic | google/baidu(567v) |
Focal-T | 82.03 | 95.86 | 28.9M | 4.9G | 224 | 0.875 | bicubic | google/baidu(i8c2) |
Focal-T (use conv) | 82.70 | 96.14 | 30.8M | 4.9G | 224 | 0.875 | bicubic | google/baidu(smrk) |
Focal-S | 83.55 | 96.29 | 51.1M | 9.4G | 224 | 0.875 | bicubic | google/baidu(dwd8) |
Focal-S (use conv) | 83.85 | 96.47 | 53.1M | 9.4G | 224 | 0.875 | bicubic | google/baidu(nr7n) |
Focal-B | 83.98 | 96.48 | 89.8M | 16.4G | 224 | 0.875 | bicubic | google/baidu(8akn) |
Focal-B (use conv) | 84.18 | 96.61 | 93.3M | 16.4G | 224 | 0.875 | bicubic | google/baidu(5nfi) |
mobilevit_xxs | 70.31 | 89.68 | 1.32M | 0.44G | 256 | 1.0 | bicubic | google/baidu(axpc) |
mobilevit_xs | 74.47 | 92.02 | 2.33M | 0.95G | 256 | 1.0 | bicubic | google/baidu(hfhm) |
mobilevit_s | 76.74 | 93.08 | 5.59M | 1.88G | 256 | 1.0 | bicubic | google/baidu(34bg) |
vip_s7 | 81.50 | 95.76 | 25.1M | 7.0G | 224 | 0.875 | bicubic | google/baidu(mh9b) |
vip_m7 | 82.75 | 96.05 | 55.3M | 16.4G | 224 | 0.875 | bicubic | google/baidu(hvm8) |
vip_l7 | 83.18 | 96.37 | 87.8M | 24.5G | 224 | 0.875 | bicubic | google/baidu(tjvh) |
mlp_mixer_b16_224 | 76.60 | 92.23 | 60.0M | 12.7G | 224 | 0.875 | bicubic | google/baidu(xh8x) |
mlp_mixer_l16_224 | 72.06 | 87.67 | 208.2M | 44.9G | 224 | 0.875 | bicubic | google/baidu(8q7r) |
resmlp_24_224 | 79.38 | 94.55 | 30.0M | 6.0G | 224 | 0.875 | bicubic | google/baidu(jdcx) |
resmlp_36_224 | 79.77 | 94.89 | 44.7M | 9.0G | 224 | 0.875 | bicubic | google/baidu(33w3) |
resmlp_big_24_224 | 81.04 | 95.02 | 129.1M | 100.7G | 224 | 0.875 | bicubic | google/baidu(r9kb) |
resmlp_12_distilled_224 | 77.95 | 93.56 | 15.3M | 3.0G | 224 | 0.875 | bicubic | google/baidu(ghyp) |
resmlp_24_distilled_224 | 80.76 | 95.22 | 30.0M | 6.0G | 224 | 0.875 | bicubic | google/baidu(sxnx) |
resmlp_36_distilled_224 | 81.15 | 95.48 | 44.7M | 9.0G | 224 | 0.875 | bicubic | google/baidu(vt85) |
resmlp_big_24_distilled_224 | 83.59 | 96.65 | 129.1M | 100.7G | 224 | 0.875 | bicubic | google/baidu(4jk5) |
resmlp_big_24_22k_224 | 84.40 | 97.11 | 129.1M | 100.7G | 224 | 0.875 | bicubic | google/baidu(ve7i) |
gmlp_s16_224 | 79.64 | 94.63 | 19.4M | 4.5G | 224 | 0.875 | bicubic | google/baidu(bcth) |
ff_only_tiny (linear_tiny) | 61.28 | 84.06 | 224 | 0.875 | bicubic | google/baidu(mjgd) | ||
ff_only_base (linear_base) | 74.82 | 91.71 | 224 | 0.875 | bicubic | google/baidu(m1jc) | ||
repmlp_res50_light_224 | 77.01 | 93.46 | 87.1M | 3.3G | 224 | 0.875 | bicubic | google/baidu(b4fg) |
cyclemlp_b1 | 78.85 | 94.60 | 15.1M | 224 | 0.9 | bicubic | google/baidu(mnbr) | |
cyclemlp_b2 | 81.58 | 95.81 | 26.8M | 224 | 0.9 | bicubic | google/baidu(jwj9) | |
cyclemlp_b3 | 82.42 | 96.07 | 38.3M | 224 | 0.9 | bicubic | google/baidu(v2fy) | |
cyclemlp_b4 | 82.96 | 96.33 | 51.8M | 224 | 0.875 | bicubic | google/baidu(fnqd) | |
cyclemlp_b5 | 83.25 | 96.44 | 75.7M | 224 | 0.875 | bicubic | google/baidu(s55c) | |
convmixer_1024_20 | 76.94 | 93.35 | 24.5M | 9.5G | 224 | 0.96 | bicubic | google/baidu(qpn9) |
convmixer_768_32 | 80.16 | 95.08 | 21.2M | 20.8G | 224 | 0.96 | bicubic | google/baidu(m5s5) |
convmixer_1536_20 | 81.37 | 95.62 | 51.8M | 72.4G | 224 | 0.96 | bicubic | google/baidu(xqty) |
convmlp_s | 76.76 | 93.40 | 9.0M | 2.4G | 224 | 0.875 | bicubic | google/baidu(3jz3) |
convmlp_m | 79.03 | 94.53 | 17.4M | 4.0G | 224 | 0.875 | bicubic | google/baidu(vyp1) |
convmlp_l | 80.15 | 95.00 | 42.7M | 10.0G | 224 | 0.875 | bicubic | google/baidu(ne5x) |
Model | backbone | box_mAP | Model |
---|---|---|---|
DETR | ResNet50 | 42.0 | google/baidu(n5gk) |
DETR | ResNet101 | 43.5 | google/baidu(bxz2) |
Mask R-CNN | Swin-T 1x | 43.7 | google/baidu(qev7) |
Mask R-CNN | Swin-T 3x | 46.0 | google/baidu(m8fg) |
Mask R-CNN | Swin-S 3x | 48.4 | google/baidu(hdw5) |
Mask R-CNN | pvtv2_b0 | 38.3 | google/baidu(3kqb) |
Mask R-CNN | pvtv2_b1 | 41.8 | google/baidu(k5aq) |
Mask R-CNN | pvtv2_b2 | 45.2 | google/baidu(jh8b) |
Mask R-CNN | pvtv2_b2_linear | 44.1 | google/baidu(8ipt) |
Mask R-CNN | pvtv2_b3 | 46.9 | google/baidu(je4y) |
Mask R-CNN | pvtv2_b4 | 47.5 | google/baidu(n3ay) |
Mask R-CNN | pvtv2_b5 | 47.4 | google/baidu(jzq1) |
Model | Backbone | Batch_size | mIoU (ss) | mIoU (ms+flip) | Backbone_checkpoint | Model_checkpoint | ConfigFile |
---|---|---|---|---|---|---|---|
SETR_Naive | ViT_large | 16 | 52.06 | 52.57 | google/baidu(owoj) | google/baidu(xdb8) | config |
SETR_PUP | ViT_large | 16 | 53.90 | 54.53 | google/baidu(owoj) | google/baidu(6sji) | config |
SETR_MLA | ViT_Large | 8 | 54.39 | 55.16 | google/baidu(owoj) | google/baidu(wora) | config |
SETR_MLA | ViT_large | 16 | 55.01 | 55.87 | google/baidu(owoj) | google/baidu(76h2) | config |
Model | Backbone | Batch_size | Iteration | mIoU (ss) | mIoU (ms+flip) | Backbone_checkpoint | Model_checkpoint | ConfigFile |
---|---|---|---|---|---|---|---|---|
SETR_Naive | ViT_Large | 8 | 40k | 76.71 | 79.03 | google/baidu(owoj) | google/baidu(g7ro) | config |
SETR_Naive | ViT_Large | 8 | 80k | 77.31 | 79.43 | google/baidu(owoj) | google/baidu(wn6q) | config |
SETR_PUP | ViT_Large | 8 | 40k | 77.92 | 79.63 | google/baidu(owoj) | google/baidu(zmoi) | config |
SETR_PUP | ViT_Large | 8 | 80k | 78.81 | 80.43 | google/baidu(owoj) | baidu(f793) | config |
SETR_MLA | ViT_Large | 8 | 40k | 76.70 | 78.96 | google/baidu(owoj) | baidu(qaiw) | config |
SETR_MLA | ViT_Large | 8 | 80k | 77.26 | 79.27 | google/baidu(owoj) | baidu(6bgj) | config |
Model | Backbone | Batch_size | Iteration | mIoU (ss) | mIoU (ms+flip) | Backbone_checkpoint | Model_checkpoint | ConfigFile |
---|---|---|---|---|---|---|---|---|
SETR_Naive | ViT_Large | 16 | 160k | 47.57 | 48.12 | google/baidu(owoj) | baidu(lugq) | config |
SETR_PUP | ViT_Large | 16 | 160k | 49.12 | 49.51 | google/baidu(owoj) | baidu(udgs) | config |
SETR_MLA | ViT_Large | 8 | 160k | 47.80 | 49.34 | google/baidu(owoj) | baidu(mrrv) | config |
DPT | ViT_Large | 16 | 160k | 47.21 | - | google/baidu(owoj) | baidu(ts7h) | config |
Segmenter | ViT_Tiny | 16 | 160k | 38.45 | - | TODO | baidu(1k97) | config |
Segmenter | ViT_Small | 16 | 160k | 46.07 | - | TODO | baidu(i8nv) | config |
Segmenter | ViT_Base | 16 | 160k | 49.08 | - | TODO | baidu(hxrl) | config |
Segmenter | ViT_Large | 16 | 160k | 51.82 | - | TODO | baidu(wdz6) | config |
Segmenter_Linear | DeiT_Base | 16 | 160k | 47.34 | - | TODO | baidu(5dpv) | config |
Segmenter | DeiT_Base | 16 | 160k | 49.27 | - | TODO | baidu(3kim) | config |
Segformer | MIT-B0 | 16 | 160k | 38.37 | - | TODO | baidu(ges9) | config |
Segformer | MIT-B1 | 16 | 160k | 42.20 | - | TODO | baidu(t4n4) | config |
Segformer | MIT-B2 | 16 | 160k | 46.38 | - | TODO | baidu(h5ar) | config |
Segformer | MIT-B3 | 16 | 160k | 48.35 | - | TODO | baidu(g9n4) | config |
Segformer | MIT-B4 | 16 | 160k | 49.01 | - | TODO | baidu(e4xw) | config |
Segformer | MIT-B5 | 16 | 160k | 49.73 | - | TODO | baidu(uczo) | config |
UperNet | Swin_Tiny | 16 | 160k | 44.90 | 45.37 | - | baidu(lkhg) | config |
UperNet | Swin_Small | 16 | 160k | 47.88 | 48.90 | - | baidu(vvy1) | config |
UperNet | Swin_Base | 16 | 160k | 48.59 | 49.04 | - | baidu(y040) | config |
UperNet | CSwin_Tiny | 16 | 160k | 49.46 | baidu(l1cp) | baidu(y1eq) | config | |
UperNet | CSwin_Small | 16 | 160k | 50.88 | baidu(6vwk) | baidu(fz2e) | config | |
UperNet | CSwin_Base | 16 | 160k | 50.64 | baidu(0ys7) | baidu(83w3) | config |
Model | Backbone | Batch_size | Iteration | mIoU (ss) | mIoU (ms+flip) | Backbone_checkpoint | Model_checkpoint | ConfigFile |
---|---|---|---|---|---|---|---|---|
Trans2seg_Medium | Resnet50c | 16 | 80k | 72.25 | - | google/baidu(4dd5) | google/baidu(qcb0) | config |
Model | FID | Image Size | Crop_pct | Interpolation | Model |
---|---|---|---|---|---|
styleformer_cifar10 | 2.73 | 32 | 1.0 | lanczos | google/baidu(ztky) |
styleformer_stl10 | 15.65 | 48 | 1.0 | lanczos | google/baidu(i973) |
styleformer_celeba | 3.32 | 64 | 1.0 | lanczos | google/baidu(fh5s) |
styleformer_lsun | 9.68 | 128 | 1.0 | lanczos | google/baidu(158t) |
*使用fid50k_full指标在 Cifar10, STL10, Celeba 以及 LSUNchurch 数据集上评估结果.
如果需要使用模型预训练权重,需要转到对应子文件夹,例如, /image_classification/ViT/
, 然后下载 .pdparam
权重文件并在python脚本中更改相关文件路径。模型的配置文件位于.、configs/
.
假设下载的预训练权重文件存储在./vit_base_patch16_224.pdparams
, 在python中使用vit_base_patch16_224
模型:
from config import get_config
from visual_transformer import build_vit as build_model
# config files in ./configs/
config = get_config('./configs/vit_base_patch16_224.yaml')
# build model
model = build_model(config)
# load pretrained weights, .pdparams is NOT needed
model_state_dict = paddle.load('./vit_base_patch16_224')
model.set_dict(model_state_dict)
🤖 详细用法庆参见每个模型对应文件夹中的README文件.
如果在单GPU上评估ViT模型在ImageNet2012数据集的性能,请使用命令行运行以下脚本:
sh run_eval.sh
or
CUDA_VISIBLE_DEVICES=0 \
python main_single_gpu.py \
-cfg='./configs/vit_base_patch16_224.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./vit_base_patch16_224'
使用多GPU运行评估
sh run_eval_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python main_multi_gpu.py \
-cfg='./configs/vit_base_patch16_224.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./vit_base_patch16_224'
如果使用单GPU在ImageNet2012数据集训练ViT模型,请使用命令行运行以下脚本:
sh run_train.sh
or
CUDA_VISIBLE_DEVICES=0 \
python main_single_gpu.py \
-cfg='./configs/vit_base_patch16_224.yaml' \
-dataset='imagenet2012' \
-batch_size=32 \
-data_path='/dataset/imagenet' \
使用多GPU运行训练:
sh run_train_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python main_multi_gpu.py \
-cfg='./configs/vit_base_patch16_224.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
- 我们鼓励并感谢您对 PaddleViT 项目的贡献, 请查看CONTRIBUTING.md以参考我们的工作流程和代码风格.
- 此 repo 遵循 Apache-2.0 许可.
如果您有任何问题, 请在我们的Github上创建一个issue.