-
Notifications
You must be signed in to change notification settings - Fork 3
/
selectFeature.m
executable file
·43 lines (40 loc) · 1.12 KB
/
selectFeature.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
function [feature, name] = selectFeature(matrix,clinical, n, name)
% this function selects feature from the matrix
% matrix is a value matrix
% matched_clinical is the original matched_clinical dataset
% n is the feature number to be selected
%
% it's output is a matrix with selected features
%% some feature is nan, remove them first
% temp = zeros(1,size(matrix,2));
% for i = 1: size(matrix, 2)
% if sum(isnan(matrix(:,i))) > 0
% temp(i) = 1;
% end
% end
% temp = temp ==1;
% matrix = matrix(:,~temp);
% if nargin == 4
% name=name(:,~temp);
% end
%% discretize by using mean+/-alpha*std. Here let alpha=0.5 for simplify
m = mean(matrix);
s = std(matrix);
disc_matrix = zeros(size(matrix));
for i = 1: size(matrix,2)
disc_matrix(matrix(:, i)>=m(i)+s(i)/2, i) = 1;
disc_matrix(matrix(:, i)<=m(i)-s(i)/2, i) = -1;
end
%% mrmr
if n < 1
seln = floor(size(matrix,2)*n);
else
seln = n;
end
feature_indc = mrmr_matrix(disc_matrix, clinical, seln);
feature = matrix(:,feature_indc);
if nargin == 4
name=name(:,feature_indc);
name = [name; num2cell(feature_indc)];
end
end