@@ -235,38 +235,11 @@ def forward_train(self, points, pts_semantic_mask, img_metas):
235
235
def simple_test (self , points , img_metas , * args , ** kwargs ):
236
236
"""Test without augmentations.
237
237
"""
238
-
239
- timestamps = []
240
- if self .evaluator_mode == 'slice_len_constant' :
241
- i = 1
242
- while i * self .len_slice < len (points [0 ]):
243
- timestamps .append (i * self .len_slice )
244
- i = i + 1
245
- timestamps .append (len (points [0 ]))
246
- else :
247
- num_slice = min (len (points [0 ]),self .num_slice )
248
- for i in range (1 ,num_slice ):
249
- timestamps .append (i * (len (points [0 ])// num_slice ))
250
- timestamps .append (len (points [0 ]))
251
-
252
- # Process
253
- semseg_results = []
254
-
255
- for i in range (len (timestamps )):
256
- if i == 0 :
257
- ts_start , ts_end = 0 , timestamps [i ]
258
- else :
259
- ts_start , ts_end = timestamps [i - 1 ], timestamps [i ]
260
- sem_result = []
261
-
262
- points_new = [points [0 ][ts_start :ts_end ,:,:].reshape (- 1 ,points [0 ].shape [- 1 ])]
263
- field = self .collate (points_new , ME .SparseTensorQuantizationMode .UNWEIGHTED_AVERAGE )
264
- x = self .extract_feat (field .sparse (), img_metas )
265
-
266
- preds = self .head .forward_test (x , field , img_metas )
267
- semseg_results .append (preds .cpu ())
238
+ field = self .collate (points , ME .SparseTensorQuantizationMode .UNWEIGHTED_AVERAGE )
239
+ x = self .extract_feat (field .sparse (), img_metas )
268
240
269
- results = [dict (semantic_mask = torch .cat (semseg_results ,dim = 0 ))]
241
+ preds = self .head .forward_test (x , field , img_metas )
242
+ results = [dict (semantic_mask = preds [0 ].cpu ())]
270
243
return results
271
244
272
245
def aug_test (self , points , img_metas , ** kwargs ):
0 commit comments