forked from FrontierLabs/AnswerRanker_of_FRONTIER_LAB
-
Notifications
You must be signed in to change notification settings - Fork 0
/
experiment_base_douban.py
124 lines (100 loc) · 4.06 KB
/
experiment_base_douban.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# -*- coding: utf-8 -*-
import numpy as np
from utils.data_loader_utils import Vocab, pad_into_matrix_test
from config_local import machine
from experiment_base import DataLoaderBase
from utils.utils import Lines
if machine == 'GPU':
# data_folder = '/mnt/sdb/share/context.large/10mhead/train.txt'
data_folder = '/mnt/sdb/share/context/train.small.txt'
elif machine == 'shareGPU':
data_folder = '/home/bowen/data/context_douban/train.small.txt'
elif machine == 'vm302':
data_folder = '/home/bowenwu/dev/data/context/train.small.txt'
elif machine == 'other':
data_folder = '/home/bowen/dev/data/context/train.small.txt'
else:
raise Exception('not support for machine ' + machine + ' now')
def is_chinese(uchar):
try:
if uchar >= u'\u4e00' and uchar <= u'\u9fa5':
return True
else:
return False
except:
return False
def is_eng(uchar):
if uchar > u'a' and uchar < u'z':
return True
if uchar > u'A' and uchar < u'Z':
return True
return False
def split_sentence2char(sentence, tostr=False):
res = []
for w in sentence.strip().decode('utf-8'):
if w.strip() != '' and (is_chinese(w) or is_eng(w)):
res += [w.encode('utf-8')]
return res if (not tostr) else ' '.join(res)
def build_vocab(filename, max_len_max=100, char=True):
vocab = Vocab()
max_len = 0
with open(filename, 'r') as fp:
for line in fp:
for sentence in line.strip().split('\t')[1:]:
if char:
words = split_sentence2char(sentence)
else:
words = sentence.split()
vocab.add_words(words)
max_len = max(max_len, len(words))
max_len = min(max_len_max, max_len)
return vocab, max_len
class ContextLines(Lines):
def __init__(self, source, vocab, context_num, ytype='int32', contain_y=True, max_len=100, char=True):
super(ContextLines, self).__init__(
source, vocab, ytype=ytype, contain_y=contain_y, max_len=max_len)
self.char = char
self.context_num = context_num
def format_x(self, lines):
sentence_lines = [[] for i in xrange(self.context_num + 1)]
for line in lines:
sentences = line.split('\t')[-self.context_num - 1:]
format_func = split_sentence2char if self.char else (
lambda x: x.split())
for i, sentence in enumerate(sentences):
sentence_lines[i].append(format_func(sentence))
batches = []
for lines in sentence_lines:
batches.append(np.array(pad_into_matrix_test(
map(self.vocab, lines), self.vocab_size, maxlen=self.max_len), dtype=np.int32))
return batches
def format(self, lines, ys):
assert len(lines) == len(ys)
batches = self.format_x(lines)
batches_mask = []
for batch in batches:
batches_mask.append(np.array(batch != 0, dtype=np.float32))
batch_Y = np.array(map(self.y_format, ys), dtype=self.y_nptype)
return batches, batches_mask, batch_Y
# end ContextLines
class DoubanDataLoader(DataLoaderBase):
def __init__(self, context_num, max_len_max=100, char=True, vocab_path=None, save_path=None):
print 'Building vocab'
if vocab_path is None:
vocab, max_len = build_vocab(
data_folder, max_len_max=max_len_max, char=char)
if save_path is not None:
print 'saving vocab to', save_path
vocab.save_vocab(save_path)
else:
vocab = Vocab()
vocab.load_vocab(vocab_path)
max_len = max_len_max
print '\t vocab size %d, max len %d' % (vocab.size, max_len)
self.vocab_size = vocab.size
self.max_len = max_len
l = ContextLines(
data_folder, vocab, context_num, max_len=max_len, ytype='int')
super(DoubanDataLoader, self).__init__(l, data_folder, support_head=False, name_list=[
'train', 'dev', 'test'], heads=[-1, -1, -1])
# end DoubanDataLoader