-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdeeplab.py
294 lines (265 loc) · 15.1 KB
/
deeplab.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import os
import sys
os.environ["CUDA_VISIBLE_DEVICES"] = sys.argv[1]
import time
import numpy as np
import tensorflow as tf
from network import Network
from estep import estep as _estep
from dataset import dataset
class ADAPT(Network):
def __init__(self,config):
Network.__init__(self,config)
self.stride = {}
self.stride["input"] = 1
# different lr for different variable
self.lr_1_list = []
self.lr_2_list = []
self.lr_10_list = []
self.lr_20_list = []
def build(self):
if "output" not in self.net:
with tf.name_scope("placeholder"):
self.net["input"] = tf.placeholder(tf.float32,[None,self.h,self.w,self.config.get("input_channel",3)])
self.net["label"] = tf.placeholder(tf.float32,[None,self.h,self.w,1])
self.net["drop_probe"] = tf.placeholder(tf.float32)
self.net["output"] = self.create_network()
self.pred()
return self.net["output"]
def create_network(self):
if "init_model_path" in self.config:
self.load_init_model()
with tf.name_scope("vgg") as scope:
# build block
block = self.build_block("input",["conv1_1","relu1_1","conv1_2","relu1_2","pool1"])
block = self.build_block(block,["conv2_1","relu2_1","conv2_2","relu2_2","pool2"])
block = self.build_block(block,["conv3_1","relu3_1","conv3_2","relu3_2","conv3_3","relu3_3","pool3"])
block = self.build_block(block,["conv4_1","relu4_1","conv4_2","relu4_2","conv4_3","relu4_3","pool4"])
block = self.build_block(block,["conv5_1","relu5_1","conv5_2","relu5_2","conv5_3","relu5_3","pool5"])
fc = self.build_fc(block,["fc6","relu6","drop6","fc7","relu7","drop7","fc8"])
# classifier
#return tf.nn.softmax(self.net[fc])
return self.net[fc]
def build_block(self,last_layer,layer_lists):
for layer in layer_lists:
if layer.startswith("conv"):
if layer[4] != "5":
with tf.name_scope(layer) as scope:
self.stride[layer] = self.stride[last_layer]
weights,bias = self.get_weights_and_bias(layer)
self.net[layer] = tf.nn.conv2d( self.net[last_layer], weights, strides = [1,1,1,1], padding="SAME", name="conv")
self.net[layer] = tf.nn.bias_add( self.net[layer], bias, name="bias")
last_layer = layer
if layer[4] == "5":
with tf.name_scope(layer) as scope:
self.stride[layer] = self.stride[last_layer]
weights,bias = self.get_weights_and_bias(layer)
self.net[layer] = tf.nn.atrous_conv2d( self.net[last_layer], weights, rate=2, padding="SAME", name="conv")
self.net[layer] = tf.nn.bias_add( self.net[layer], bias, name="bias")
last_layer = layer
if layer.startswith("relu"):
with tf.name_scope(layer) as scope:
self.stride[layer] = self.stride[last_layer]
self.net[layer] = tf.nn.relu( self.net[last_layer],name="relu")
last_layer = layer
if layer.startswith("pool"):
if layer[4] not in ["4","5"]:
with tf.name_scope(layer) as scope:
self.stride[layer] = 2 * self.stride[last_layer]
self.net[layer] = tf.nn.max_pool( self.net[last_layer], ksize=[1,3,3,1], strides=[1,2,2,1],padding="SAME",name="pool")
last_layer = layer
if layer[4] in ["4","5"]:
with tf.name_scope(layer) as scope:
self.stride[layer] = self.stride[last_layer]
self.net[layer] = tf.nn.max_pool( self.net[last_layer], ksize=[1,3,3,1], strides=[1,1,1,1],padding="SAME",name="pool")
last_layer = layer
return last_layer
def build_fc(self,last_layer, layer_lists):
for layer in layer_lists:
if layer.startswith("fc"):
with tf.name_scope(layer) as scope:
weights,bias = self.get_weights_and_bias(layer)
if last_layer.startswith("pool"):
self.net[layer] = tf.nn.atrous_conv2d( self.net[last_layer], weights, rate=4, padding="SAME", name="conv")
else:
self.net[layer] = tf.nn.conv2d( self.net[last_layer], weights, strides = [1,1,1,1], padding="SAME", name="conv")
self.net[layer] = tf.nn.bias_add( self.net[layer], bias, name="bias")
last_layer = layer
if layer.startswith("relu"):
with tf.name_scope(layer) as scope:
self.net[layer] = tf.nn.relu( self.net[last_layer])
last_layer = layer
if layer.startswith("drop"):
with tf.name_scope(layer) as scope:
self.net[layer] = tf.nn.dropout( self.net[last_layer],self.net["drop_probe"])
last_layer = layer
return last_layer
def e_step(self,last_layer, bg_p, fg_p, num_iter, suppress_others, margin_others):
shrink_label = tf.squeeze(tf.image.resize_nearest_neighbor(self.net["label"],self.net["output"].shape[1:3]),axis=3)
def estep(feature_map,label):
#s = time.time()
#print("start time:%f" % s)
tmp_ = _estep(feature_map,label,suppress_others,num_iter,margin_others,bg_p,fg_p,use_c=False)
#tmp_ = _estep(feature_map,label,suppress_others,num_iter,margin_others,bg_p,fg_p)
#e = time.time()
#print("duration time :%f " % (e-s))
return tmp_
layer = "e_step"
self.net[layer] = tf.py_func(estep,[self.net[last_layer],shrink_label],tf.float32)
last_layer = layer
layer = "e_argmax"
self.net[layer] = tf.argmax(self.net[last_layer],axis=3)
return layer
def load_init_model(self):
model_path = self.config["init_model_path"]
self.init_model = np.load(model_path,encoding="latin1").item()
print("load init model success: %s" % model_path)
def get_weights_and_bias(self,layer):
print("layer: %s" % layer)
if layer.startswith("conv"):
shape = [3,3,0,0]
if layer == "conv1_1":
shape[2] = 3
else:
shape[2] = 64 * self.stride[layer]
if shape[2] > 512: shape[2] = 512
if layer in ["conv2_1","conv3_1","conv4_1"]: shape[2] = int(shape[2]/2)
shape[3] = 64 * self.stride[layer]
if shape[3] > 512: shape[3] = 512
if layer.startswith("fc"):
if layer == "fc6":
shape = [4,4,512,4096]
if layer == "fc7":
shape = [1,1,4096,4096]
if layer == "fc8":
shape = [1,1,4096,self.category_num]
if "init_model_path" not in self.config:
init = tf.random_normal_initializer(stddev=0.01)
weights = tf.get_variable(name="%s_weights" % layer,initializer=init, shape = shape)
init = tf.constant_initializer(0)
bias = tf.get_variable(name="%s_bias" % layer,initializer=init, shape = [shape[-1]])
else:
if layer == "fc8":
#init = tf.random_normal_initializer(stddev=0.01)
init = tf.contrib.layers.xavier_initializer(uniform=True)
else:
init = tf.constant_initializer(self.init_model[layer]["w"])
weights = tf.get_variable(name="%s_weights" % layer,initializer=init,shape = shape)
if layer == "fc8":
#init = tf.constant_initializer(0)
init = tf.contrib.layers.xavier_initializer(uniform=True)
else:
init = tf.constant_initializer(self.init_model[layer]["b"])
bias = tf.get_variable(name="%s_bias" % layer,initializer=init,shape = [shape[-1]])
self.weights[layer] = (weights,bias)
if layer != "fc8":
self.lr_1_list.append(weights)
self.lr_2_list.append(bias)
else:
self.lr_10_list.append(weights)
self.lr_20_list.append(bias)
self.trainable_list.append(weights)
self.trainable_list.append(bias)
return weights,bias
def getloss(self,weight_decay):
weaklabel_layer = self.e_step("fc8", bg_p=0.4, fg_p=0.2, num_iter=5, suppress_others=True, margin_others=1e-5)
loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=tf.reshape(self.net[weaklabel_layer],[-1]),logits=tf.reshape(self.net["output"],[-1,self.category_num])))
self.loss["norm"] = loss
self.loss["l2"] = sum([tf.nn.l2_loss(self.weights[layer][0]) for layer in self.weights])
self.loss["total"] = self.loss["norm"] + weight_decay*self.loss["l2"]
return loss
def optimize(self,base_lr,momentum):
self.net["lr"] = tf.Variable(base_lr, trainable=False)
opt = tf.train.MomentumOptimizer(self.net["lr"],momentum)
#opt = tf.train.AdamOptimizer(self.net["lr"])
gradients = opt.compute_gradients(self.loss["total"],var_list=self.trainable_list)
a = tf.Variable(1.0,dtype=tf.float32)
for (g,v) in gradients:
if v in self.lr_2_list:
g = 2*g
if v in self.lr_10_list:
g = 10*g
if v in self.lr_20_list:
g = 20*g
self.net["accum_gradient_accum"] = [self.net["accum_gradient"][i].assign_add( g[0]/self.accum_num ) for (i,g) in enumerate(gradients)]
self.net["accum_gradient_clean"] = [g.assign(tf.zeros_like(g)) for g in self.net["accum_gradient"]]
gradients = [(g,self.trainable_list[i]) for i,g in enumerate(self.net["accum_gradient"])]
self.net["accum_gradient_update"] = opt.apply_gradients(gradients)
self.net["train_op"] = opt.apply_gradients(gradients)
self.net["g"] = a
def train(self,base_lr,weight_decay,momentum,batch_size,epoches):
gpu_options = tf.ConfigProto(gpu_options=tf.GPUOptions(per_process_gpu_memory_fraction=0.35))
self.sess = tf.Session(config=gpu_options)
assert self.data is not None,"data is None"
assert self.sess is not None,"sess is None"
self.net["is_training"] = tf.placeholder(tf.bool)
x_train,y_train,_,iterator_train = self.data.next_batch(category="train",batch_size=batch_size,epoches=-1)
x_val,y_val,_,iterator_val = self.data.next_batch(category="val",batch_size=batch_size,epoches=-1)
x = tf.cond(self.net["is_training"],lambda:x_train,lambda:x_val)
y = tf.cond(self.net["is_training"],lambda:y_train,lambda:y_val)
self.build()
self.pre_train(base_lr,weight_decay,momentum,batch_size,save_layers=["input","output","label","pred","is_training","drop_probe"])
with self.sess.as_default():
self.sess.run(tf.global_variables_initializer())
self.sess.run(tf.local_variables_initializer())
self.sess.run(iterator_train.initializer)
self.sess.run(iterator_val.initializer)
if self.config.get("model_path",False) is not False:
print("start to load model: %s" % self.config.get("model_path"))
print("before l2 loss:%f" % self.sess.run(self.loss["l2"]))
self.restore_from_model(self.saver["norm"],self.config.get("model_path"),checkpoint=False)
print("model loaded ...")
print("after l2 loss:%f" % self.sess.run(self.loss["l2"]))
start_time = time.time()
print("start_time: %f" % start_time)
print("config -- lr:%f weight_decay:%f momentum:%f batch_size:%f epoches:%f" % (base_lr,weight_decay,momentum,batch_size,epoches))
epoch,i = 0.0,0
iterations_per_epoch_train = self.data.get_data_len() // batch_size
while epoch < epoches:
if i == 0:
self.sess.run(tf.assign(self.net["lr"],base_lr))
if i == 10*iterations_per_epoch_train:
new_lr = 1e-4
print("save model before new_lr:%f" % new_lr)
self.saver["lr"].save(self.sess,os.path.join(self.config.get("saver_path","saver"),"lr-%f" % base_lr),global_step=i)
self.sess.run(tf.assign(self.net["lr"],new_lr))
base_lr = new_lr
if i == 20*iterations_per_epoch_train:
new_lr = 1e-5
print("save model before new_lr:%f" % new_lr)
self.saver["lr"].save(self.sess,os.path.join(self.config.get("saver_path","saver"),"lr-%f" % base_lr),global_step=i)
self.sess.run(tf.assign(self.net["lr"],new_lr))
base_lr = new_lr
if i == 30*iterations_per_epoch_train:
new_lr = 1e-6
print("save model before new_lr:%f" % new_lr)
self.saver["lr"].save(self.sess,os.path.join(self.config.get("saver_path","saver"),"lr-%f" % base_lr),global_step=i)
self.sess.run(tf.assign(self.net["lr"],new_lr))
base_lr = new_lr
data_x,data_y = self.sess.run([x,y],feed_dict={self.net["is_training"]:True})
params = {self.net["input"]:data_x,self.net["label"]:data_y,self.net["drop_probe"]:0.5}
self.sess.run(self.net["accum_gradient_accum"],feed_dict=params)
if i % self.accum_num == self.accum_num - 1:
_ = self.sess.run(self.net["accum_gradient_update"])
_ = self.sess.run(self.net["accum_gradient_clean"])
if i%2000 == 0:
_ = self.sess.run(self.net["g"],feed_dict=params)
if i%500 == 10:
loss,lr = self.sess.run([self.loss["total"],self.net["lr"]],feed_dict=params)
print("epoch:%f, iteration:%f, lr:%f, loss:%f" % (epoch,i,lr,loss))
if i%6000 == 5999:
self.saver["norm"].save(self.sess,os.path.join(self.config.get("saver_path","saver"),"norm"),global_step=i)
i+=1
epoch = i / iterations_per_epoch_train
self.saver["norm"].save(self.sess,os.path.join(self.config.get("saver_path","saver"),"norm"),global_step=i)
end_time = time.time()
print("end_time:%f" % end_time)
print("duration time:%f" % (end_time-start_time))
if __name__ == "__main__":
batch_size = 6 # the actual batch size is batch_size * accum_num
input_size = (321,321)
category_num = 21
epoches = 40
data = dataset({"batch_size":batch_size,"input_size":input_size,"epoches":epoches,"category_num":category_num})
adapt = ADAPT({"data":data,"batch_size":batch_size,"input_size":input_size,"epoches":epoches,"category_num":category_num,"init_model_path":"./model/init.npy","accum_num":5})
adapt.train(base_lr=0.001,weight_decay=1e-5,momentum=0.9,batch_size=batch_size,epoches=epoches)