-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtensorboard_practice_2.py
61 lines (51 loc) · 2.07 KB
/
tensorboard_practice_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import tensorflow as tf
import numpy as np
def add_layer(inputs,in_size,out_size,n_layer,activation_function=None):
layer_name='layer%s' % n_layer
with tf.name_scope('layer_name'):
with tf.name_scope('weights'):
Weights=tf.Variable(tf.random_normal([in_size,out_size]))
tf.summary.histogram(layer_name +'/weights', Weights)
with tf.name_scope('biases'):
biases=tf.Variable(tf.zeros([1,out_size])+0.1)
tf.summary.histogram(layer_name + '/biases', biases)
with tf.name_scope('Wx_plus_b'):
Wx_plus_b=tf.matmul(inputs,Weights)+biases
if activation_function is None:
outputs=Wx_plus_b
else:
outputs=activation_function(Wx_plus_b)
tf.summary.histogram(layer_name + '/outputs', outputs)
return outputs
##create data
x_data=np.linspace(-1,1,300)[:,np.newaxis] #[300,1]
noise=np.random.normal(0, 0.05, x_data.shape)
y_data=np.square(x_data)-0.5+noise
#create layer
with tf.name_scope('inputs'):
xs=tf.placeholder(tf.float32,[None,1],name='x_input')
ys=tf.placeholder(tf.float32,[None,1],name='y_input')
#add hidden layer
l1=add_layer(xs,1,10,n_layer=1,activation_function=tf.nn.relu)
#add output layer
prediction=add_layer(l1,10,1,n_layer=2,activation_function=None)
with tf.name_scope('loss'):
loss=tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),
reduction_indices=[1]))
tf.summary.scalar('loss', loss)
with tf.name_scope('train'):
train_step=tf.train.GradientDescentOptimizer(0.1).minimize(loss)
init=tf.global_variables_initializer()
sess=tf.Session()
merged = tf.summary.merge_all()
#tensorboard --logdir=logs
writer=tf.summary.FileWriter("logs/",sess.graph)
sess.run(tf.global_variables_initializer())
with tf.Session() as sess:
sess.run(init)
for i in range(1000):
sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
if i%50 ==0:
result = sess.run(merged,
feed_dict={xs: x_data, ys: y_data})
writer.add_summary(result, i)