-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtensorboard_practice.py
54 lines (43 loc) · 1.68 KB
/
tensorboard_practice.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import tensorflow as tf
import numpy as np
def add_layer(inputs,in_size,out_size,activation_function=None):
with tf.name_scope('layer'):
with tf.name_scope('weights'):
Weights=tf.Variable(tf.random_normal([in_size,out_size]))
with tf.name_scope('biases'):
biases=tf.Variable(tf.zeros([1,out_size])+0.1)
with tf.name_scope('Wx_plus_b'):
Wx_plus_b=tf.matmul(inputs,Weights)+biases
if activation_function is None:
outputs=Wx_plus_b
else:
outputs=activation_function(Wx_plus_b)
return outputs
##create data
x_data=np.linspace(-1,1,300)[:,np.newaxis] #[300,1]
noise=np.random.normal(0, 0.05, x_data.shape)
y_data=np.square(x_data)-0.5+noise
#create layer
with tf.name_scope('inputs'):
xs=tf.placeholder(tf.float32,[None,1],name='x_input')
ys=tf.placeholder(tf.float32,[None,1],name='y_input')
#add hidden layer
l1=add_layer(xs,1,10,activation_function=tf.nn.relu)
#add output layer
prediction=add_layer(l1,10,1,activation_function=None)
with tf.name_scope('loss'):
loss=tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),
reduction_indices=[1]))
with tf.name_scope('train'):
train_step=tf.train.GradientDescentOptimizer(0.1).minimize(loss)
init=tf.global_variables_initializer()
sess=tf.Session()
#tensorboard --logdir=logs
writer=tf.summary.FileWriter("logs/",sess.graph)
sess.run(tf.global_variables_initializer())
# with tf.Session() as sess:
# sess.run(init)
# for i in range(1000):
# sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
# if i%50 ==0:
# print(sess.run(loss,feed_dict={xs:x_data,ys:y_data}))