-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpytorch_utils.py
357 lines (328 loc) · 14.4 KB
/
pytorch_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
@author: Anirban Das
"""
import numpy as np
import torch
from torch.utils.data import Dataset
import torch.nn as nn
import torch.nn.functional as F
from typing import Any, Dict, List
import random
import copy
import os, math
from tqdm import tqdm
from PIL import Image
from print_metrics import print_metrics_binary
from sklearn.utils import shuffle
def normalize(x, means=None, stds=None):
num_dims = x.shape[1]
if means is None and stds is None:
means = []
stds = []
for dim in range(num_dims):
m = x[:, dim, :, :].mean()
st = x[:, dim, :, :].std()
x[:, dim, :, :] = (x[:, dim, :, :] - m)/st
means.append(m.item())
stds.append(st.item())
return x , means, stds
else:
for dim in range(num_dims):
m = means[dim]
st = stds[dim]
x[:, dim, :, :] = (x[:, dim, :, :] - m)/st
return x , None, None
class CustomTensorDataset(Dataset):
"""
TensorDataset with support of transforms. 支持转换的TensorDataset。
"""
def __init__(self, tensors, transform=None):
assert all(tensors[0].size(0) == tensor.size(0) for tensor in tensors)
self.tensors = tensors
self.transform = transform
def __getitem__(self, index):
x = self.tensors[0][index]
if self.transform:
x = self.transform(x)
y = self.tensors[1][index]
# to sent indices as well : https://discuss.pytorch.org/t/how-to-retrieve-the-sample-indices-of-a-mini-batch/7948/12
return x, y, index
def __len__(self):
return self.tensors[0].size(0)
class MultiViewDataSet(Dataset):
def find_classes(self, dir):
classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))]
classes.sort()
class_to_idx = {classes[i]: i for i in range(len(classes))}
return classes, class_to_idx
def __init__(self, root, data_type, transform=None, target_transform=None, perform_transform=False, datapoints=0, seed=42):
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
self.x = []
self.y = []
self.root = root
self.x, self.y = shuffle(self.x,self.y, random_state=seed)
self.classes, self.class_to_idx = self.find_classes(root)
self.transform = transform
self.target_transform = target_transform
self.perform_transform = perform_transform
self.datapoints = datapoints
# root / <label> / <train/test> / <item> / <view>.png
for label in os.listdir(root): # Label
for item in os.listdir(root + '/' + label + '/' + data_type):
views = []
for view in os.listdir(root + '/' + label + '/' + data_type + '/' + item):
views.append(root + '/' + label + '/' + data_type + '/' + item + '/' + view)
self.x.append(views)
self.y.append(self.class_to_idx[label])
if datapoints>0:
self.x = self.x[:self.datapoints]
self.y = self.y[:self.datapoints]
if perform_transform:
# perform the transform upfront instead of waiting for later 提前执行转换,而不是等待稍后
self.x = self.transformDataset(self.x, self.transform)
# Override to give PyTorch access to any image on the dataset 覆盖以允许PyTorch访问数据集上的任何图像
def __getitem__(self, index):
orginal_views = self.x[index]
views = []
if not self.perform_transform:
for view in orginal_views:
im = Image.open(view)
im = im.convert('RGB')
if self.transform is not None:
im = self.transform(im)
views.append(im)
return views, self.y[index], index
else:
# if the transform has already been performed 如果变换已经执行
return orginal_views, self.y[index], index
# Override to give PyTorch size of dataset 重写以指定PyTorch数据集的大小
def __len__(self):
return len(self.x)
def transformDataset(self, data, transform):
print("Transforming Dataset using ", transform)
res = []
for sample in tqdm(data):
images = []
for view in sample:
im = Image.open(view)
im = im.convert('RGB')
im = transform(im)
images.append(im)
res.append(images)
return res
class CifarNet(nn.Module):
def __init__(self, ensemble=False):
super(CifarNet, self).__init__()
self.ensemble = ensemble
self.conv1 = nn.Conv2d(3, 64, kernel_size=(5,5))
self.conv2 = nn.Conv2d(64, 128, kernel_size=(5,3))
self.fc1 = nn.Linear(128*5*2, 512)
self.fc2 = nn.Linear(512, 256)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2(x), 2))
x = x.view(-1, 128*5*2)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
class CifarNetCombined(nn.Module):
def __init__(self, ensemble=False, nb_classes=10, bias=False):
super(CifarNetCombined, self).__init__()
self.ensemble = ensemble
self.conv1 = nn.Conv2d(3, 64, kernel_size=(5,5))
self.conv2 = nn.Conv2d(64, 128, kernel_size=(5,3))
self.fc1 = nn.Linear(128*5*2, 512)
self.fc2 = nn.Linear(512, 256)
self.fc3 = nn.Linear(256, nb_classes, bias=bias)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2(x), 2))
x = x.view(-1, 128*5*2)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
class CifarNetSimpleSmaller(nn.Module):
def __init__(self, nb_classes=10, bias=False):
# similar to https://www.tensorflow.org/tutorials/images/cnn
super(CifarNetSimpleSmaller, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=(3,3), padding=2)
self.do1 = nn.Dropout(p=0.5)
self.do2 = nn.Dropout(p=0.5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(32, 64,kernel_size=(3,3), padding=2)
self.conv3 = nn.Conv2d(64, 64,kernel_size=(3,3))
self.fc1 = nn.Linear(64 * 7 * 3, 64)
self.do3 = nn.Dropout(p=0.5)
self.fc2 = nn.Linear(64, nb_classes, bias=bias)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.do1(x)
x = self.pool(F.relu(self.conv2(x)))
x = self.do2(x)
x = self.conv3(x)
x = torch.flatten(x, 1) # flatten all dimensions except batch
x = F.relu(self.fc1(x))
x = self.do3(x)
x = self.fc2(x)
return x
class CifarNet2(nn.Module):
def __init__(self):
super(CifarNet2, self).__init__()
self.conv1 = nn.Conv2d(3, 64, 3)
self.conv2 = nn.Conv2d(64, 128, 3)
self.conv3 = nn.Conv2d(128, 256, 3)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(64 * 4 * 4, 128)
self.fc2 = nn.Linear(128, 256)
self.fc3 = nn.Linear(256, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = self.pool(F.relu(self.conv3(x)))
x = x.view(-1, 64 * 4 * 4)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return F.log_softmax(x, dim=1)
class MNIST_NET(nn.Module):
def __init__(self, ensemble=False):
super(MNIST_NET, self).__init__()
self.ensemble = ensemble
self.conv1 = nn.Conv2d(1, 64, kernel_size=(5,3))
self.conv2 = nn.Conv2d(64, 64, kernel_size=(5,3))
self.fc1 = nn.Linear(64*4*2, 256)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2(x), 2))
x = x.view(-1, 64*4*2)
x = self.fc1(x)
return x
class TopLayer(nn.Module):
def __init__(self, linear_size=512, nb_classes=10, bias = False):
super(TopLayer, self).__init__()
self.classifier = nn.Linear(256+256, nb_classes, bias=bias)
def forward(self, x):
x = self.classifier(F.relu(x))
return x
def add_model(dst_model, src_model):
"""Add the parameters of two models.添加两个模型的参数。
Args:
dst_model (torch.nn.Module): the model to which the src_model will be added.
src_model (torch.nn.Module): the model to be added to dst_model.
Returns:
torch.nn.Module: the resulting model of the addition.
"""
params1 = src_model.named_parameters()
params2 = dst_model.named_parameters()
dict_params2 = dict(params2)
with torch.no_grad():
for name1, param1 in params1:
if name1 in dict_params2:
dict_params2[name1].set_(param1.data + dict_params2[name1].data)
return dst_model
def scale_model(model, scale):
"""Scale the parameters of a model.缩放模型的参数。
Args:
model (torch.nn.Module): the models whose parameters will be scaled.
scale (float): the scaling factor.
Returns:
torch.nn.Module: the module with scaled parameters.
"""
params = model.named_parameters()
dict_params = dict(params)
with torch.no_grad():
for name, param in dict_params.items():
dict_params[name].set_(dict_params[name].data * scale)
return model
def model_norm(model_1, model_2):
squared_sum = 0
for name, layer in model_1.named_parameters(): #计算两个模型对应参数的欧氏距离
squared_sum += torch.sum(torch.pow(layer.data - model_2.state_dict()[name].data, 2))
return math.sqrt(squared_sum)
def federated_avg(models: Dict[Any, torch.nn.Module]):
nr_models = len(models)
model_list = list(models.values())
device = torch.device('cuda' if next(model_list[0].parameters()).is_cuda else 'cpu')
model = copy.deepcopy(model_list[0])
model.to(device)
# set all weights and biases of the model to 0
model = scale_model(model, 0.0)
for i in range(nr_models):
model = add_model(model, model_list[i])
model = scale_model(model, 1.0 / nr_models)
return model
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k 计算指定k值的k个顶部预测的准确性"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum()
res.append(correct_k.mul_(100.0))
return res
def get_train_or_test_loss_simplified_cifar(network_left,network_right,overall_train_dataloader, overall_test_dataloader, report, cord_div_idx=16):
network_left.eval() #在训练模型时会在前面加上:model.train() 在测试模型时在前面使用:model.eval() 如果不写这两个程序也可以运行,这是因为这两个方法是针对在网络训练和测试时采用不同方式的情况
network_right.eval()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
train_loss = 0
train_correct = 0
test_correct= 0
test_loss = 0
# report with actual train set 与实际训练集一起报告
with torch.no_grad():
for data, target, indices in overall_train_dataloader:
data_left, data_right, target = data[:, :, :, :cord_div_idx].to(device), data[:, :, :, cord_div_idx:].to(device), target.to(device)
output_left = network_left(data_left)
output_right = network_right(data_right)
mean = 0
std = 1
noise = torch.randn(output_left.size()) * std + mean
output_left = output_left + noise.to(device)
noise = torch.randn(output_left.size()) * std + mean
output_right = output_right + noise.to(device)
output_top = output_right + output_left
# test loss is the average loss of the two clients
train_loss += F.cross_entropy(output_top, target.long()).item()
# for accuracy we blindly choose the prediction from pred
pred = output_top.data.max(1, keepdim=True)[1]
train_correct += pred.eq(target.long().data.view_as(pred)).sum()
train_loss /= len(overall_train_dataloader)
report["train_loss"].append(train_loss)
report["train_accuracy"].append(100. * train_correct / len(overall_train_dataloader.dataset))
print('\nEntire Training set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
train_loss, train_correct, len(overall_train_dataloader.dataset),
100. * train_correct / len(overall_train_dataloader.dataset)))
# report with actual test set
with torch.no_grad():
for data, target, indices in overall_test_dataloader:
data_left, data_right, target = data[:, :, :, :cord_div_idx].to(device), data[:, :, :, cord_div_idx:].to(device), target.to(device)
output_left = network_left(data_left)
output_right = network_right(data_right)
output_top = output_right + output_left
# test loss is the average loss of the two clients
test_loss += F.cross_entropy(output_top, target.long()).item()
# for accuracy we blindly choose the prediction from pred
# 输出预测类别
pred = output_top.data.max(1, keepdim=True)[1]
test_correct += pred.eq(target.long().data.view_as(pred)).sum()
test_loss /= len(overall_test_dataloader)
report["test_loss"].append(test_loss)
report["test_accuracy"].append(100. * test_correct / len(overall_test_dataloader.dataset))
print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, test_correct, len(overall_test_dataloader.dataset),
100. * test_correct / len(overall_test_dataloader.dataset)))
if __name__ == "__main__":
one = nn.Conv2d(20,13, 3)
two =nn.Conv2d(20,13, 3)
three = nn.Conv2d(20,13, 3)
bb = federated_avg({1:one, 2:two, 3:three})
assert torch.isclose(bb.weight.data, (one.weight.data + two.weight.data + three.weight.data)/3.0).sum() == bb.weight.data.numel()