-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathmerge.py
157 lines (124 loc) · 6.47 KB
/
merge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#!/usr/bin/env python
# -- coding:utf-8 --
from xgboost import XGBRegressor
from sklearn.ensemble import GradientBoostingRegressor, RandomForestRegressor
from sklearn.svm import LinearSVR
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
import pandas as pd
import numpy as np
import tools
def dfs(l, r, feature_file, folder):
if l == r:
return pd.read_csv(folder + '/' + feature_file[l] + '.csv')
mid = (l + r) / 2
l_frame = dfs(l, mid, feature_file, folder)
r_frame = dfs(mid + 1, r, feature_file, folder)
return pd.merge(l_frame, r_frame, how='left')
def calculate(test_set):
return np.mean(
test_set[test_set.y != -1].apply(
lambda x: ((x['predictY'] - x['y']) / x['y']) ** 2,
axis=1))
def diff1(x):
if x['_3day_exists_avg'] is None:
return None
return x['_3day_exists_avg'] - x['_7day_exists_avg']
def diff2(x):
if x['_7day_avg'] is None:
return None
return x['_7day_avg'] - x['_30day_avg']
def run(feature_files, training_dates, feature_set_folder):
train_set = pd.concat(
[dfs(0, len(feature_files), feature_files + ['y'], 'dataset1/' + date) for date in training_dates])
test_set = dfs(0, len(feature_files), feature_files + ['y'], 'dataset1/2016-06-01')
test1_set = dfs(0, len(feature_files), feature_files + ['y'], 'dataset1/2016-05-25')
train_set = train_set.fillna(-1, downcast='infer')
test_set = test_set.fillna(-1, downcast='infer')
test1_set = test1_set.fillna(-1, downcast='infer')
train_set['y_log'] = train_set['y'].apply(lambda x: np.log(1 + x))
test_set['y_log'] = test_set['y'].apply(lambda x: np.log(1 + x))
test1_set['y_log'] = test1_set['y'].apply(lambda x: np.log(1 + x))
feature_set = filter(lambda x: x not in ['y', 'time', 'province', 'market', 'name', 'type', 'y_log'],
train_set.columns)
scaler = StandardScaler()
scaler.fit(train_set[feature_set].as_matrix())
# model1
model1 = LinearRegression(normalize=True)
model1.fit(scaler.transform(train_set[feature_set].as_matrix()), train_set['y'].as_matrix(),
sample_weight=map(lambda x: 1.0 / x / x, train_set['y'].as_matrix())
)
test_set['predictY'] = model1.predict(scaler.transform(test_set[feature_set].as_matrix()))
test_set.to_csv('result1/' + feature_set_folder + '/model1_offline.csv')
test1_set['predictY'] = model1.predict(scaler.transform(test1_set[feature_set].as_matrix()))
test1_set.to_csv('result1/' + feature_set_folder + '/model1_offline1.csv')
# model2
model2 = XGBRegressor(n_estimators=500, learning_rate=0.02, max_depth=5, colsample_bytree=0.7, subsample=0.8)
model2.fit(train_set[feature_set].as_matrix(), train_set['y'].as_matrix(),
sample_weight=map(lambda x: 1.0 / x / x, train_set['y'].as_matrix())
)
test_set['predictY'] = model2.predict(test_set[feature_set].as_matrix())
test_set.to_csv('result1/' + feature_set_folder + '/model2_offline.csv')
test1_set['predictY'] = model2.predict(test1_set[feature_set].as_matrix())
test1_set.to_csv('result1/' + feature_set_folder + '/model2_offline1.csv')
# model3
model3 = LinearSVR(tol=1e-7)
model3.fit(scaler.transform(train_set[feature_set].as_matrix()), train_set['y'].as_matrix(),
sample_weight=map(lambda x: 1.0 / x / x, train_set['y'].as_matrix())
)
test_set['predictY'] = model3.predict(scaler.transform(test_set[feature_set].as_matrix()))
test_set.to_csv('result1/' + feature_set_folder + '/model3_offline.csv')
test1_set['predictY'] = model3.predict(scaler.transform(test1_set[feature_set].as_matrix()))
test1_set.to_csv('result1/' + feature_set_folder + '/model3_offline1.csv')
# model4
model4 = RandomForestRegressor(n_estimators=500, max_depth=6, max_features=0.3, max_leaf_nodes=60)
model4.fit(train_set[feature_set].as_matrix(), train_set['y'].as_matrix(),
sample_weight=np.array(map(lambda x: 1.0 / x / x, train_set['y'].as_matrix()))
)
test_set['predictY'] = model4.predict(test_set[feature_set].as_matrix())
test_set.to_csv('result1/' + feature_set_folder + '/model4_offline.csv')
test1_set['predictY'] = model4.predict(test1_set[feature_set].as_matrix())
test1_set.to_csv('result1/' + feature_set_folder + '/model4_offline1.csv')
# model5
model5 = XGBRegressor(n_estimators=500, learning_rate=0.02, max_depth=6, colsample_bytree=0.7, subsample=0.8)
model5.fit(train_set[feature_set].as_matrix(), train_set['y_log'].as_matrix())
test_set['predictY'] = model5.predict(test_set[feature_set].as_matrix())
test_set['predictY'] = test_set['predictY'].apply(lambda x: np.exp(x) - 1)
test_set.to_csv('result1/' + feature_set_folder + '/model5_offline.csv')
test1_set['predictY'] = model5.predict(test1_set[feature_set].as_matrix())
test1_set['predictY'] = test_set['predictY'].apply(lambda x: np.exp(x) - 1)
test1_set.to_csv('result1/' + feature_set_folder + '/model5_offline1.csv')
pass
# run(['v1', 'v2', 'v3'], tools.date_range('2016-04-01', '2016-05-01'), 'feature_set1')
# submit(['v1', 'v2', 'v3', 'v7'])
def merge(x):
if x['_1day_exists_avg'] == -1:
return x['predictY']
if x['unique_size'] == 1 and x['_1day_exists_avg'] != -1:
return x['_1day_exists_avg']
# 线性回归值很大直接用
if x['predictY1'] > 100:
return x['predictY1']
if x['predictY1'] < 0:
return x['predictY'] * 0.5 + 0.5 * x['predictY4']
return x['predictY'] * 0.4 + x['predictY1'] * 0.2 + x['predictY4'] * 0.4
f1 = pd.read_csv('result/feature_set1/model1_offline.csv')
f = pd.read_csv('result/feature_set1/model2_offline.csv')
unique_size = pd.read_csv('unique_size.csv')
f = pd.merge(f, unique_size, how='left')
print calculate(f)
f['predictY1'] = f1['predictY']
f4 = pd.read_csv('result/feature_set1/model4_offline.csv')
f['predictY4'] = f4['predictY']
f['predictY'] = f.apply(merge, axis=1)
print calculate(f)
f.to_csv('current.csv')
f1 = pd.read_csv('result/feature_set2/model1_online.csv')
f = pd.read_csv('result/feature_set2/model2_online.csv')
f2 = pd.read_csv('result/feature_set2/model4_online.csv')
unique_size = pd.read_csv('unique_size.csv')
f = pd.merge(f, unique_size, how='left')
f['predictY1'] = f1['predictY']
f['predictY4'] = f2['predictY']
f['predictY'] = f.apply(merge, axis=1)
f[['market', 'type', 'name', 'time', 'predictY']].to_csv('submit_12_16_1.csv', header=None, index=False)