-
Notifications
You must be signed in to change notification settings - Fork 0
/
wave2lip_impliment.py
297 lines (237 loc) · 10.9 KB
/
wave2lip_impliment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import platform
import subprocess
from os import path
import argparse
import audio
import cv2
import face_detection
import numpy as np
import os
import torch
from tqdm import tqdm
from models import Wav2Lip
from utils.global_constant import config
from utils.log_utils import logger
parser = argparse.ArgumentParser(description='Inference code to lip-sync videos in the wild using Wav2Lip models')
class args:
fps = 25
static = False
pads = [0, 10, 0, 0]
face_det_batch_size = 8
wav2lip_batch_size = 256
resize_factor = 1
crop = [0, -1, 0, -1]
box = [-1, -1, -1, -1]
rotate = False
nosmooth = False
img_size = 96
checkpoint_path = config.get("wave2lip","checkpoint_path")
def get_smoothened_boxes(boxes, T):
for i in range(len(boxes)):
if i + T > len(boxes):
window = boxes[len(boxes) - T:]
else:
window = boxes[i: i + T]
boxes[i] = np.mean(window, axis=0)
return boxes
def face_detect(images):
batch_size = args.face_det_batch_size
detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D, flip_input=False, device=device)
while 1:
predictions = []
try:
for i in tqdm(range(0, len(images), batch_size)):
predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
except RuntimeError:
if batch_size == 1:
raise RuntimeError(
'Image too big to run face detection on GPU. Please use the --resize_factor argument')
batch_size //= 2
print('Recovering from OOM error; New batch size: {}'.format(batch_size))
continue
break
head_exist = []
results = []
pady1, pady2, padx1, padx2 = args.pads
first_head_rect = None
first_head_image = None
for rect, image in zip(predictions, images):
if rect is not None:
first_head_rect = rect
first_head_image = image
break
for rect, image in zip(predictions, images):
if rect is None:
head_exist.append(False)
if len(results) == 0:
y1 = max(0, first_head_rect[1] - pady1)
y2 = min(first_head_image.shape[0], first_head_rect[3] + pady2)
x1 = max(0, first_head_rect[0] - padx1)
x2 = min(first_head_image.shape[1], first_head_rect[2] + padx2)
results.append([x1, y1, x2, y2])
else:
results.append(results[-1])
# cv2.imwrite('temp/faulty_frame.jpg', image) # check this frame where the face was not detected.
# raise ValueError('Face not detected! Ensure the video contains a face in all the frames.')
else:
head_exist.append(True)
y1 = max(0, rect[1] - pady1)
y2 = min(image.shape[0], rect[3] + pady2)
x1 = max(0, rect[0] - padx1)
x2 = min(image.shape[1], rect[2] + padx2)
results.append([x1, y1, x2, y2])
boxes = np.array(results)
if not args.nosmooth: boxes = get_smoothened_boxes(boxes, T=5)
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)]
del detector
return results, head_exist
def datagen(frames, mels):
img_batch, head_exist_batch, mel_batch, frame_batch, coords_batch = [], [], [], [], []
# ***************************1、识别人脸对应的位置坐标,未识别的人脸的帧对应为None ***************************
if args.box[0] == -1:
if not args.static:
face_det_results, head_exist = face_detect(frames) # BGR2RGB for CNN face detection
else:
face_det_results, head_exist = face_detect([frames[0]])
else:
logger.info('Using the specified bounding box instead of face detection...')
y1, y2, x1, x2 = args.box
face_det_results = [[f[y1: y2, x1:x2], (y1, y2, x1, x2)] for f in frames]
head_exist = [True] * len(frames)
logger.info("face detect end")
for i, m in enumerate(mels):
# 获取对应的一组音频对应的帧下标idx
idx = 0 if args.static else i % len(frames)
# 获取对应的一组音频对应的帧
frame_to_save = frames[idx].copy()
# 获取对应的一组音频对应的帧对应的人脸坐标
face, coords = face_det_results[idx].copy()
face = cv2.resize(face, (args.img_size, args.img_size))
if i in (0, 3, 5):
cv2.imwrite(path.join("/home/guo/wave2lip/wave2lip_torch/Wav2Lip/results", '{}_resize.jpg'.format(i)), face)
head_exist_batch.append(head_exist[idx])
img_batch.append(face)
mel_batch.append(m)
frame_batch.append(frame_to_save)
coords_batch.append(coords)
if len(img_batch) >= args.wav2lip_batch_size:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, args.img_size // 2:] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
yield img_batch, head_exist_batch, mel_batch, frame_batch, coords_batch
img_batch, head_exist_batch, mel_batch, frame_batch, coords_batch = [], [], [], [], []
if len(img_batch) > 0:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, args.img_size // 2:] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
yield img_batch, head_exist_batch, mel_batch, frame_batch, coords_batch
mel_step_size = 16
device = 'cuda' if torch.cuda.is_available() else 'cpu'
logger.info('Using {} for inference.'.format(device))
def _load(checkpoint_path):
if device == 'cuda':
checkpoint = torch.load(checkpoint_path)
else:
checkpoint = torch.load(checkpoint_path,
map_location=lambda storage, loc: storage)
return checkpoint
def load_model(path):
model = Wav2Lip()
logger.info("Load checkpoint from: {}".format(path))
checkpoint = _load(path)
s = checkpoint["state_dict"]
new_s = {}
for k, v in s.items():
new_s[k.replace('module.', '')] = v
model.load_state_dict(new_s)
model = model.to(device)
return model.eval()
model = load_model(args.checkpoint_path)
def wave2lip(face_path, audio_path,handle_num):
if not os.path.isfile(face_path):
raise ValueError('--face argument must be a valid path to video/image file')
elif face_path.split('.')[1] in ['jpg', 'png', 'jpeg']:
full_frames = [cv2.imread(face_path)]
fps = args.fps
else:
video_stream = cv2.VideoCapture(face_path)
fps = video_stream.get(cv2.CAP_PROP_FPS)
logger.info('Reading video frames...')
full_frames = []
while 1:
still_reading, frame = video_stream.read()
if not still_reading:
video_stream.release()
break
if args.resize_factor > 1:
frame = cv2.resize(frame, (frame.shape[1] // args.resize_factor, frame.shape[0] // args.resize_factor))
if args.rotate:
frame = cv2.rotate(frame, cv2.cv2.ROTATE_90_CLOCKWISE)
y1, y2, x1, x2 = args.crop
if x2 == -1: x2 = frame.shape[1]
if y2 == -1: y2 = frame.shape[0]
frame = frame[y1:y2, x1:x2]
full_frames.append(frame)
logger.info("Number of frames available for inference: {}".format(len(full_frames)))
if not audio_path.endswith('.wav'):
logger.info('Extracting raw audio...')
command = 'ffmpeg -y -i {} -strict -2 {}'.format(audio_path, 'temp/temp.wav')
subprocess.call(command, shell=True)
args.audio = 'temp/temp.wav'
wav = audio.load_wav(args.audio, 16000)
mel = audio.melspectrogram(wav)
if np.isnan(mel.reshape(-1)).sum() > 0:
raise ValueError('Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again')
mel_chunks = []
# TODO 与视频对应起来,每16,理论上来说,mel_idx_multiplier与mel_step_size相等,将音频分组,并获取与音频长度相等的视频帧
mel_idx_multiplier = 80. / fps
i = 0
while 1:
start_idx = int(i * mel_idx_multiplier)
if start_idx + mel_step_size > len(mel[0]):
mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:])
break
mel_chunks.append(mel[:, start_idx: start_idx + mel_step_size])
i += 1
logger.info("Length of mel chunks: {}".format(len(mel_chunks)))
# TODO 找到视频与音频的对应关系
full_frames = full_frames[:len(mel_chunks)]
batch_size = args.wav2lip_batch_size
gen = datagen(full_frames.copy(), mel_chunks)
# 覆盖对应的帧(脑袋部位像素)
for i, (img_batch, exist_head_batch, mel_batch, frames, coords) in enumerate(tqdm(gen,
total=int(np.ceil(float(
len(mel_chunks)) / batch_size)))):
if i == 0:
frame_h, frame_w = full_frames[0].shape[:-1]
out = cv2.VideoWriter('temp/result.avi',
cv2.VideoWriter_fourcc(*'DIVX'), fps, (frame_w, frame_h))
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
logger.info("batch write message:img batch: %d,frames:%d,coords:%d,exist_head_batch:%d", len(img_batch), len(frames), len(coords), len(exist_head_batch))
with torch.no_grad():
pred = model(mel_batch, img_batch)
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
# #逐帧更新并写入到临时视频文件中去
for p, f, c, exist in zip(pred, frames, coords, exist_head_batch):
if exist:
y1, y2, x1, x2 = c
p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1))
f[y1:y2, x1:x2] = p
#TODO 图像修复
out.write(f)
out.release()
output_file = "temp/{}.avi".format(handle_num // 100)
if os.path.isfile(output_file):
os.remove(output_file)
command = 'ffmpeg -y -i {} -i {} -strict -2 -q:v 1 {}'.format(audio_path, 'temp/result.avi', output_file)
logger.info("merge audio and video begin")
subprocess.call(command, shell=platform.system() != 'Windows')
logger.info("merge audio and video end")
return output_file
if __name__ == '__main__':
wave2lip("/home/guo/wave2lip/temp/盘春园视频test_clip.mp4", "/home/guo/wave2lip/temp/3.mp3",0)