forked from intel-analytics/ipex-llm
-
Notifications
You must be signed in to change notification settings - Fork 1
/
rag.py
99 lines (81 loc) · 3.75 KB
/
rag.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This would makes sure Python is aware there is more than one sub-package within bigdl,
# physically located elsewhere.
# Otherwise there would be module not found error in non-pip's setting as Python would
# only search the first bigdl package and end up finding only one sub-package.
# Code is adapted from https://python.langchain.com/docs/modules/chains/additional/question_answering.html
import torch
import argparse
from langchain.vectorstores import Chroma
from langchain.chains.chat_vector_db.prompts import (CONDENSE_QUESTION_PROMPT,
QA_PROMPT)
from langchain.text_splitter import CharacterTextSplitter
from langchain.chains.question_answering import load_qa_chain
from langchain.callbacks.manager import CallbackManager
from ipex_llm.langchain.llms import TransformersLLM
from ipex_llm.langchain.embeddings import TransformersEmbeddings
text_doc = '''
BigDL seamlessly scales your data analytics & AI applications from laptop to cloud, with the following libraries:
LLM: Low-bit (INT3/INT4/INT5/INT8) large language model library for Intel CPU/GPU
Orca: Distributed Big Data & AI (TF & PyTorch) Pipeline on Spark and Ray
Nano: Transparent Acceleration of Tensorflow & PyTorch Programs on Intel CPU/GPU
DLlib: "Equivalent of Spark MLlib" for Deep Learning
Chronos: Scalable Time Series Analysis using AutoML
Friesian: End-to-End Recommendation Systems
PPML: Secure Big Data and AI (with SGX Hardware Security)
'''
def main(args):
input_path = args.input_path
model_path = args.model_path
query = args.question
# split texts of input doc
if input_path is None:
input_doc = text_doc
else:
with open(input_path) as f:
input_doc = f.read()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_text(input_doc)
# create embeddings and store into vectordb
embeddings = TransformersEmbeddings.from_model_id(
model_id=model_path,
model_kwargs={"trust_remote_code": True},
device_map='xpu'
)
docsearch = Chroma.from_texts(texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))]).as_retriever()
#get relavant texts
docs = docsearch.get_relevant_documents(query)
bigdl_llm = TransformersLLM.from_model_id(
model_id=model_path,
model_kwargs={"temperature": 0, "max_length": 1024, "trust_remote_code": True},
device_map='xpu'
)
doc_chain = load_qa_chain(
bigdl_llm, chain_type="stuff", prompt=QA_PROMPT
)
output = doc_chain.run(input_documents=docs, question=query)
print(output)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='TransformersLLM Langchain QA over Docs Example')
parser.add_argument('-m','--model-path', type=str, required=True,
help='the path to transformers model')
parser.add_argument('-i', '--input-path', type=str,
help='the path to the input doc.')
parser.add_argument('-q', '--question', type=str, default='What is BigDL?',
help='qustion you want to ask.')
args = parser.parse_args()
main(args)