Skip to content

Files

This branch is 153 commits behind intel-analytics/ipex-llm:main.

Mixtral

In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Mixtral models on Intel GPUs. For illustration purposes, we utilize the mistralai/Mixtral-8x7B-Instruct-v0.1 as a reference Mixtral model.

Requirements

To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to here for more information.

Important: Please make sure you have installed transformers==4.36.0 to run the example.

Example: Predict Tokens using generate() API

In the example generate.py, we show a basic use case for a Mixtral model to predict the next N tokens using generate() API, with IPEX-LLM INT4 optimizations on Intel GPUs.

1. Install

1.1 Installation on Linux

We suggest using conda to manage environment:

conda create -n llm python=3.11
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

# Please make sure you are using a stable version of Transformers, 4.36.0 or newer.
pip install transformers==4.36.0

1.2 Installation on Windows

We suggest using conda to manage environment:

conda create -n llm python=3.11 libuv
conda activate llm

# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

# Please make sure you are using a stable version of Transformers, 4.36.0 or newer.
pip install transformers==4.36.0

2. Configures OneAPI environment variables for Linux

Note

Skip this step if you are running on Windows.

This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.

source /opt/intel/oneapi/setvars.sh

3. Runtime Configurations

For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.

3.1 Configurations for Linux

For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
For Intel Data Center GPU Max Series
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
export ENABLE_SDP_FUSION=1

Note: Please note that libtcmalloc.so can be installed by conda install -c conda-forge -y gperftools=2.10.

For Intel iGPU
export SYCL_CACHE_PERSISTENT=1
export BIGDL_LLM_XMX_DISABLED=1

3.2 Configurations for Windows

For Intel iGPU
set SYCL_CACHE_PERSISTENT=1
set BIGDL_LLM_XMX_DISABLED=1
For Intel Arc™ A-Series Graphics
set SYCL_CACHE_PERSISTENT=1

Note

For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.

4. Running examples

python ./generate.py --prompt 'What is AI?'

In the example, several arguments can be passed to satisfy your requirements:

  • --repo-id-or-model-path REPO_ID_OR_MODEL_PATH: argument defining the huggingface repo id for the Mixtral model (e.g. mistralai/Mixtral-8x7B-Instruct-v0.1) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be 'mistralai/Mixtral-8x7B-Instruct-v0.1'.
  • --prompt PROMPT: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be 'What is AI?'.
  • --n-predict N_PREDICT: argument defining the max number of tokens to predict. It is default to be 32.

Sample Output

Inference time: xxxx s 
-------------------- Output --------------------
[INST] What is AI? [/INST] AI, or Artificial Intelligence, refers to the development of computer systems that can perform tasks that would normally require human intelligence to accomplish. These tasks can include things