-
Notifications
You must be signed in to change notification settings - Fork 11
/
log_test.log
1624 lines (1096 loc) · 61 KB
/
log_test.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
wandb: WARNING W&B installed but not logged in. Run `wandb login` or set the WANDB_API_KEY env variable.
2021-10-13 02:01:28 - INFO - from_pretrained - 125 : loading vocabulary file /data/nfs14/nfs/aisearch/asr/xhsun/CommonModel/chinese-roberta-wwm/vocab.txt
2021-10-13 02:01:30 - INFO - getExamples - 44 : Heads like : text_a text_b label
2021-10-13 02:01:30 - INFO - getExamples - 57 : *****************************Logging some dev examples*****************************
2021-10-13 02:01:30 - INFO - getExamples - 58 : Total dev nums is : 8802
2021-10-13 02:01:30 - INFO - getExamples - 61 : 求初二上册全部英语课堂笔记,急! 求几套初二上册的数学试卷,谢谢! 0
2021-10-13 02:01:30 - INFO - getExamples - 61 : 烂桃花是什么意思啊? 犯桃花是什么意思啊? 0
2021-10-13 02:01:30 - INFO - getExamples - 61 : 绿菊花什么意思 菊花嘴什么意思 0
2021-10-13 02:01:30 - INFO - getExamples - 61 : 古诗咏柳中的咏字是什么意思 古诗咏柳是什么意思 0
2021-10-13 02:01:30 - INFO - getExamples - 61 : 酷狗音乐好还是百度音乐好 百度音乐好还是酷狗音乐好 1
2021-10-13 02:01:30 - INFO - __call__ - 72 : EmbeddingSimilarityEvaluator: Evaluating the model on dataset:
Batches: 0%| | 0/138 [00:00<?, ?it/s]Batches: 1%| | 1/138 [00:00<01:39, 1.38it/s]Batches: 4%|▎ | 5/138 [00:00<01:08, 1.95it/s]Batches: 7%|▋ | 10/138 [00:00<00:46, 2.73it/s]Batches: 11%|█ | 15/138 [00:01<00:32, 3.80it/s]Batches: 14%|█▍ | 20/138 [00:01<00:22, 5.26it/s]Batches: 19%|█▉ | 26/138 [00:01<00:15, 7.19it/s]Batches: 23%|██▎ | 32/138 [00:01<00:10, 9.70it/s]Batches: 28%|██▊ | 38/138 [00:01<00:07, 12.88it/s]Batches: 32%|███▏ | 44/138 [00:01<00:05, 16.73it/s]Batches: 36%|███▌ | 50/138 [00:01<00:04, 21.24it/s]Batches: 41%|████ | 56/138 [00:01<00:03, 26.05it/s]Batches: 45%|████▍ | 62/138 [00:01<00:02, 31.19it/s]Batches: 49%|████▉ | 68/138 [00:02<00:01, 36.26it/s]Batches: 54%|█████▎ | 74/138 [00:02<00:01, 40.71it/s]Batches: 58%|█████▊ | 80/138 [00:02<00:01, 43.19it/s]Batches: 62%|██████▏ | 86/138 [00:02<00:01, 47.05it/s]Batches: 67%|██████▋ | 92/138 [00:02<00:00, 49.16it/s]Batches: 71%|███████ | 98/138 [00:02<00:00, 49.68it/s]Batches: 75%|███████▌ | 104/138 [00:02<00:00, 49.31it/s]Batches: 80%|███████▉ | 110/138 [00:02<00:00, 49.92it/s]Batches: 84%|████████▍ | 116/138 [00:02<00:00, 50.20it/s]Batches: 88%|████████▊ | 122/138 [00:03<00:00, 50.41it/s]Batches: 93%|█████████▎| 128/138 [00:03<00:00, 51.21it/s]Batches: 97%|█████████▋| 134/138 [00:03<00:00, 52.30it/s]Batches: 100%|██████████| 138/138 [00:03<00:00, 41.32it/s]
Batches: 0%| | 0/138 [00:00<?, ?it/s]Batches: 3%|▎ | 4/138 [00:00<00:03, 38.31it/s]Batches: 7%|▋ | 9/138 [00:00<00:03, 40.18it/s]Batches: 10%|█ | 14/138 [00:00<00:02, 42.34it/s]Batches: 14%|█▍ | 19/138 [00:00<00:02, 44.20it/s]Batches: 18%|█▊ | 25/138 [00:00<00:02, 46.11it/s]Batches: 22%|██▏ | 31/138 [00:00<00:02, 47.77it/s]Batches: 27%|██▋ | 37/138 [00:00<00:02, 49.22it/s]Batches: 31%|███ | 43/138 [00:00<00:01, 50.35it/s]Batches: 36%|███▌ | 49/138 [00:00<00:01, 51.16it/s]Batches: 40%|███▉ | 55/138 [00:01<00:01, 52.16it/s]Batches: 44%|████▍ | 61/138 [00:01<00:01, 53.03it/s]Batches: 49%|████▊ | 67/138 [00:01<00:01, 53.91it/s]Batches: 53%|█████▎ | 73/138 [00:01<00:01, 54.60it/s]Batches: 57%|█████▋ | 79/138 [00:01<00:01, 55.10it/s]Batches: 62%|██████▏ | 85/138 [00:01<00:00, 55.84it/s]Batches: 66%|██████▌ | 91/138 [00:01<00:00, 56.31it/s]Batches: 70%|███████ | 97/138 [00:01<00:00, 56.27it/s]Batches: 75%|███████▍ | 103/138 [00:01<00:00, 56.84it/s]Batches: 79%|███████▉ | 109/138 [00:02<00:00, 57.42it/s]Batches: 83%|████████▎ | 115/138 [00:02<00:00, 57.83it/s]Batches: 88%|████████▊ | 121/138 [00:02<00:00, 58.45it/s]Batches: 92%|█████████▏| 127/138 [00:02<00:00, 58.83it/s]Batches: 97%|█████████▋| 134/138 [00:02<00:00, 59.87it/s]Batches: 100%|██████████| 138/138 [00:02<00:00, 54.70it/s]
2021-10-13 02:01:41 - INFO - __call__ - 103 : Cosine-Similarity : Pearson: 0.5057 Spearman: 0.5759
2021-10-13 02:01:41 - INFO - __call__ - 105 : Manhattan-Distance: Pearson: 0.5592 Spearman: 0.5813
2021-10-13 02:01:41 - INFO - __call__ - 107 : Euclidean-Distance: Pearson: 0.5622 Spearman: 0.5854
2021-10-13 02:01:41 - INFO - __call__ - 109 : Dot-Product-Similarity: Pearson: 0.2944 Spearman: 0.2848
2021-10-13 02:01:41 - INFO - train - 56 : 一个epoch 下,每隔18个step会输出一次loss,每隔47个step会评估一次模型
0it [00:00, ?it/s]2021-10-13 02:01:42 - INFO - __call__ - 72 : EmbeddingSimilarityEvaluator: Evaluating the model on dataset in epoch 0 after 1 steps:
Batches: 0%| | 0/138 [00:00<?, ?it/s][A
Batches: 4%|▎ | 5/138 [00:00<00:03, 42.14it/s][A
Batches: 7%|▋ | 10/138 [00:00<00:02, 43.26it/s][A
Batches: 11%|█ | 15/138 [00:00<00:02, 44.55it/s][A
Batches: 14%|█▍ | 20/138 [00:00<00:02, 45.76it/s][A
Batches: 18%|█▊ | 25/138 [00:00<00:02, 45.71it/s][A
Batches: 22%|██▏ | 31/138 [00:00<00:02, 47.26it/s][A
Batches: 27%|██▋ | 37/138 [00:00<00:02, 48.99it/s][A
Batches: 31%|███ | 43/138 [00:00<00:01, 50.31it/s][A
Batches: 36%|███▌ | 49/138 [00:00<00:01, 51.37it/s][A
Batches: 40%|███▉ | 55/138 [00:01<00:01, 51.16it/s][A
Batches: 44%|████▍ | 61/138 [00:01<00:01, 50.93it/s][A
Batches: 49%|████▊ | 67/138 [00:01<00:01, 52.01it/s][A
Batches: 53%|█████▎ | 73/138 [00:01<00:01, 53.15it/s][A
Batches: 57%|█████▋ | 79/138 [00:01<00:01, 53.93it/s][A
Batches: 62%|██████▏ | 85/138 [00:01<00:00, 54.70it/s][A
Batches: 66%|██████▌ | 91/138 [00:01<00:00, 55.43it/s][A
Batches: 70%|███████ | 97/138 [00:01<00:00, 55.85it/s][A
Batches: 75%|███████▍ | 103/138 [00:01<00:00, 55.64it/s][A
Batches: 79%|███████▉ | 109/138 [00:02<00:00, 54.64it/s][A
Batches: 83%|████████▎ | 115/138 [00:02<00:00, 54.20it/s][A
Batches: 88%|████████▊ | 121/138 [00:02<00:00, 55.27it/s][A
Batches: 93%|█████████▎| 128/138 [00:02<00:00, 56.68it/s][A
Batches: 98%|█████████▊| 135/138 [00:02<00:00, 58.23it/s][ABatches: 100%|██████████| 138/138 [00:02<00:00, 53.37it/s]
Batches: 0%| | 0/138 [00:00<?, ?it/s][A
Batches: 3%|▎ | 4/138 [00:00<00:03, 39.25it/s][A
Batches: 7%|▋ | 9/138 [00:00<00:03, 40.93it/s][A
Batches: 10%|█ | 14/138 [00:00<00:02, 42.90it/s][A
Batches: 14%|█▍ | 19/138 [00:00<00:02, 44.61it/s][A
Batches: 18%|█▊ | 25/138 [00:00<00:02, 46.36it/s][A
Batches: 22%|██▏ | 31/138 [00:00<00:02, 47.88it/s][A
Batches: 27%|██▋ | 37/138 [00:00<00:02, 49.27it/s][A
Batches: 31%|███ | 43/138 [00:00<00:01, 50.40it/s][A
Batches: 36%|███▌ | 49/138 [00:00<00:01, 51.23it/s][A
Batches: 40%|███▉ | 55/138 [00:01<00:01, 52.23it/s][A
Batches: 44%|████▍ | 61/138 [00:01<00:01, 53.02it/s][A
Batches: 49%|████▊ | 67/138 [00:01<00:01, 53.82it/s][A
Batches: 53%|█████▎ | 73/138 [00:01<00:01, 54.45it/s][A
Batches: 57%|█████▋ | 79/138 [00:01<00:01, 54.95it/s][A
Batches: 62%|██████▏ | 85/138 [00:01<00:00, 55.61it/s][A
Batches: 66%|██████▌ | 91/138 [00:01<00:00, 56.14it/s][A
Batches: 70%|███████ | 97/138 [00:01<00:00, 56.32it/s][A
Batches: 75%|███████▍ | 103/138 [00:01<00:00, 56.90it/s][A
Batches: 79%|███████▉ | 109/138 [00:02<00:00, 56.90it/s][A
Batches: 83%|████████▎ | 115/138 [00:02<00:00, 56.44it/s][A
Batches: 88%|████████▊ | 121/138 [00:02<00:00, 57.24it/s][A
Batches: 92%|█████████▏| 127/138 [00:02<00:00, 57.99it/s][A
Batches: 97%|█████████▋| 134/138 [00:02<00:00, 59.19it/s][ABatches: 100%|██████████| 138/138 [00:02<00:00, 54.46it/s]
2021-10-13 02:01:49 - INFO - __call__ - 103 : Cosine-Similarity : Pearson: 0.5057 Spearman: 0.5759
2021-10-13 02:01:49 - INFO - __call__ - 105 : Manhattan-Distance: Pearson: 0.5592 Spearman: 0.5813
2021-10-13 02:01:49 - INFO - __call__ - 107 : Euclidean-Distance: Pearson: 0.5622 Spearman: 0.5854
2021-10-13 02:01:49 - INFO - __call__ - 109 : Dot-Product-Similarity: Pearson: 0.2944 Spearman: 0.2848
2021-10-13 02:01:49 - INFO - save - 371 : Save model to /data/nfs14/nfs/aisearch/asr/xhsun/bwbd_recall/unSimCSE_lcqmc
2021-10-13 02:01:50 - INFO - train - 98 : In epoch 0, training_step 0, the eval score is 0.5758500529612859, previous eval score is -9999999, model has been saved in /data/nfs14/nfs/aisearch/asr/xhsun/bwbd_recall/unSimCSE_lcqmc
1it [00:08, 8.56s/it]2it [00:08, 6.04s/it]3it [00:08, 4.28s/it]4it [00:09, 3.08s/it]5it [00:09, 2.22s/it]6it [00:09, 1.60s/it]7it [00:09, 1.16s/it]8it [00:09, 1.17it/s]9it [00:09, 1.56it/s]10it [00:10, 2.02it/s]11it [00:10, 2.52it/s]12it [00:10, 3.04it/s]13it [00:10, 3.65it/s]14it [00:10, 4.14it/s]15it [00:10, 4.64it/s]16it [00:11, 5.26it/s]17it [00:11, 5.39it/s]18it [00:11, 5.41it/s]2021-10-13 02:01:53 - INFO - train - 75 : Epoch : 0, train_step : 18/470, loss_value : 0.18831074982881546
19it [00:11, 5.69it/s]20it [00:11, 5.87it/s]21it [00:11, 5.80it/s]22it [00:12, 6.14it/s]23it [00:12, 5.93it/s]24it [00:12, 6.04it/s]25it [00:12, 5.98it/s]26it [00:12, 5.90it/s]27it [00:12, 5.92it/s]28it [00:13, 5.62it/s]29it [00:13, 5.91it/s]30it [00:13, 6.08it/s]31it [00:13, 6.19it/s]32it [00:13, 6.08it/s]33it [00:13, 6.26it/s]34it [00:14, 6.43it/s]35it [00:14, 6.42it/s]36it [00:14, 6.37it/s]2021-10-13 02:01:56 - INFO - train - 75 : Epoch : 0, train_step : 36/470, loss_value : 0.012866139586549252
37it [00:14, 6.52it/s]38it [00:14, 6.50it/s]39it [00:14, 6.30it/s]40it [00:14, 6.67it/s]41it [00:15, 6.42it/s]42it [00:15, 6.31it/s]43it [00:15, 6.48it/s]44it [00:15, 6.65it/s]45it [00:15, 6.58it/s]46it [00:15, 6.54it/s]47it [00:16, 6.54it/s]2021-10-13 02:01:58 - INFO - __call__ - 72 : EmbeddingSimilarityEvaluator: Evaluating the model on dataset in epoch 0 after 48 steps:
Batches: 0%| | 0/138 [00:00<?, ?it/s][A
Batches: 4%|▎ | 5/138 [00:00<00:02, 45.30it/s][A
Batches: 8%|▊ | 11/138 [00:00<00:02, 46.70it/s][A
Batches: 12%|█▏ | 17/138 [00:00<00:02, 48.23it/s][A
Batches: 17%|█▋ | 23/138 [00:00<00:02, 49.87it/s][A
Batches: 21%|██ | 29/138 [00:00<00:02, 51.31it/s][A
Batches: 25%|██▌ | 35/138 [00:00<00:01, 52.85it/s][A
Batches: 30%|██▉ | 41/138 [00:00<00:01, 53.93it/s][A
Batches: 34%|███▍ | 47/138 [00:00<00:01, 55.01it/s][A
Batches: 38%|███▊ | 53/138 [00:00<00:01, 55.48it/s][A
Batches: 43%|████▎ | 59/138 [00:01<00:01, 56.20it/s][A
Batches: 47%|████▋ | 65/138 [00:01<00:01, 57.08it/s][A
Batches: 51%|█████▏ | 71/138 [00:01<00:01, 57.70it/s][A
Batches: 56%|█████▌ | 77/138 [00:01<00:01, 58.20it/s][A
Batches: 60%|██████ | 83/138 [00:01<00:00, 58.35it/s][A
Batches: 65%|██████▌ | 90/138 [00:01<00:00, 59.17it/s][A
Batches: 70%|███████ | 97/138 [00:01<00:00, 59.51it/s][A
Batches: 75%|███████▌ | 104/138 [00:01<00:00, 60.44it/s][A
Batches: 80%|████████ | 111/138 [00:01<00:00, 60.85it/s][A
Batches: 86%|████████▌ | 118/138 [00:02<00:00, 61.44it/s][A
Batches: 91%|█████████ | 125/138 [00:02<00:00, 62.15it/s][A
Batches: 96%|█████████▌| 132/138 [00:02<00:00, 63.00it/s][ABatches: 100%|██████████| 138/138 [00:02<00:00, 58.37it/s]
Batches: 0%| | 0/138 [00:00<?, ?it/s][A
Batches: 4%|▎ | 5/138 [00:00<00:03, 41.59it/s][A
Batches: 7%|▋ | 10/138 [00:00<00:02, 43.43it/s][A
Batches: 12%|█▏ | 16/138 [00:00<00:02, 45.29it/s][A
Batches: 16%|█▌ | 22/138 [00:00<00:02, 47.44it/s][A
Batches: 20%|██ | 28/138 [00:00<00:02, 49.44it/s][A
Batches: 25%|██▍ | 34/138 [00:00<00:02, 51.11it/s][A
Batches: 29%|██▉ | 40/138 [00:00<00:01, 52.47it/s][A
Batches: 33%|███▎ | 46/138 [00:00<00:01, 53.70it/s][A
Batches: 38%|███▊ | 52/138 [00:00<00:01, 54.92it/s][A
Batches: 42%|████▏ | 58/138 [00:01<00:01, 55.59it/s][A
Batches: 46%|████▋ | 64/138 [00:01<00:01, 56.48it/s][A
Batches: 51%|█████ | 70/138 [00:01<00:01, 56.77it/s][A
Batches: 55%|█████▌ | 76/138 [00:01<00:01, 57.24it/s][A
Batches: 60%|██████ | 83/138 [00:01<00:00, 58.12it/s][A
Batches: 64%|██████▍ | 89/138 [00:01<00:00, 58.51it/s][A
Batches: 69%|██████▉ | 95/138 [00:01<00:00, 43.88it/s][A
Batches: 73%|███████▎ | 101/138 [00:01<00:00, 45.86it/s][A
Batches: 77%|███████▋ | 106/138 [00:02<00:00, 45.77it/s][A
Batches: 80%|████████ | 111/138 [00:02<00:00, 45.74it/s][A
Batches: 85%|████████▍ | 117/138 [00:02<00:00, 47.31it/s][A
Batches: 89%|████████▉ | 123/138 [00:02<00:00, 49.03it/s][A
Batches: 93%|█████████▎| 129/138 [00:02<00:00, 50.92it/s][A
Batches: 99%|█████████▊| 136/138 [00:02<00:00, 54.56it/s][ABatches: 100%|██████████| 138/138 [00:02<00:00, 52.20it/s]
2021-10-13 02:02:04 - INFO - __call__ - 103 : Cosine-Similarity : Pearson: 0.5300 Spearman: 0.5993
2021-10-13 02:02:04 - INFO - __call__ - 105 : Manhattan-Distance: Pearson: 0.6035 Spearman: 0.6305
2021-10-13 02:02:04 - INFO - __call__ - 107 : Euclidean-Distance: Pearson: 0.6016 Spearman: 0.6284
2021-10-13 02:02:04 - INFO - __call__ - 109 : Dot-Product-Similarity: Pearson: 0.3615 Spearman: 0.3438
2021-10-13 02:02:04 - INFO - save - 371 : Save model to /data/nfs14/nfs/aisearch/asr/xhsun/bwbd_recall/unSimCSE_lcqmc
2021-10-13 02:02:05 - INFO - train - 98 : In epoch 0, training_step 47, the eval score is 0.5993234329951954, previous eval score is 0.5758500529612859, model has been saved in /data/nfs14/nfs/aisearch/asr/xhsun/bwbd_recall/unSimCSE_lcqmc
48it [00:23, 2.41s/it]49it [00:23, 1.74s/it]50it [00:24, 1.27s/it]51it [00:24, 1.07it/s]52it [00:24, 1.42it/s]53it [00:24, 1.85it/s]54it [00:24, 2.35it/s]2021-10-13 02:02:06 - INFO - train - 75 : Epoch : 0, train_step : 54/470, loss_value : 0.0031677554361522198
55it [00:24, 2.89it/s]56it [00:24, 3.50it/s]57it [00:25, 3.97it/s]58it [00:25, 4.62it/s]59it [00:25, 5.25it/s]60it [00:25, 5.71it/s]61it [00:25, 6.20it/s]62it [00:25, 6.10it/s]63it [00:26, 6.26it/s]64it [00:26, 6.48it/s]65it [00:26, 6.52it/s]66it [00:26, 6.94it/s]67it [00:26, 6.99it/s]68it [00:26, 6.99it/s]69it [00:26, 6.85it/s]70it [00:27, 6.85it/s]71it [00:27, 6.77it/s]72it [00:27, 6.48it/s]2021-10-13 02:02:09 - INFO - train - 75 : Epoch : 0, train_step : 72/470, loss_value : 0.0012649388938573087
73it [00:27, 6.58it/s]74it [00:27, 6.84it/s]75it [00:27, 6.89it/s]76it [00:27, 6.77it/s]77it [00:28, 6.62it/s]78it [00:28, 6.59it/s]79it [00:28, 6.47it/s]80it [00:28, 6.78it/s]81it [00:28, 6.63it/s]82it [00:28, 6.51it/s]83it [00:28, 6.59it/s]84it [00:29, 6.48it/s]85it [00:29, 6.59it/s]86it [00:29, 6.89it/s]87it [00:29, 6.80it/s]88it [00:29, 6.94it/s]89it [00:29, 6.88it/s]90it [00:30, 6.55it/s]2021-10-13 02:02:12 - INFO - train - 75 : Epoch : 0, train_step : 90/470, loss_value : 0.0018377644026056966
91it [00:30, 6.45it/s]92it [00:30, 6.45it/s]93it [00:30, 6.63it/s]94it [00:30, 7.08it/s]94it [00:30, 3.07it/s]
0it [00:00, ?it/s]2021-10-13 02:02:12 - INFO - __call__ - 72 : EmbeddingSimilarityEvaluator: Evaluating the model on dataset in epoch 1 after 1 steps:
Batches: 0%| | 0/138 [00:00<?, ?it/s][A
Batches: 4%|▎ | 5/138 [00:00<00:03, 44.13it/s][A
Batches: 8%|▊ | 11/138 [00:00<00:02, 45.86it/s][A
Batches: 12%|█▏ | 17/138 [00:00<00:02, 47.61it/s][A
Batches: 17%|█▋ | 23/138 [00:00<00:02, 49.41it/s][A
Batches: 21%|██ | 29/138 [00:00<00:02, 50.92it/s][A
Batches: 25%|██▌ | 35/138 [00:00<00:01, 52.54it/s][A
Batches: 30%|██▉ | 41/138 [00:00<00:01, 53.81it/s][A
Batches: 34%|███▍ | 47/138 [00:00<00:01, 54.72it/s][A
Batches: 38%|███▊ | 53/138 [00:00<00:01, 54.78it/s][A
Batches: 43%|████▎ | 59/138 [00:01<00:01, 54.73it/s][A
Batches: 47%|████▋ | 65/138 [00:01<00:01, 55.68it/s][A
Batches: 51%|█████▏ | 71/138 [00:01<00:01, 56.29it/s][A
Batches: 56%|█████▌ | 77/138 [00:01<00:01, 56.69it/s][A
Batches: 60%|██████ | 83/138 [00:01<00:00, 57.41it/s][A
Batches: 64%|██████▍ | 89/138 [00:01<00:00, 57.34it/s][A
Batches: 69%|██████▉ | 95/138 [00:01<00:00, 55.81it/s][A
Batches: 73%|███████▎ | 101/138 [00:01<00:00, 55.29it/s][A
Batches: 78%|███████▊ | 107/138 [00:01<00:00, 54.00it/s][A
Batches: 82%|████████▏ | 113/138 [00:02<00:00, 53.08it/s][A
Batches: 86%|████████▌ | 119/138 [00:02<00:00, 52.73it/s][A
Batches: 91%|█████████ | 125/138 [00:02<00:00, 52.69it/s][A
Batches: 95%|█████████▍| 131/138 [00:02<00:00, 53.33it/s][A
Batches: 99%|█████████▉| 137/138 [00:02<00:00, 54.99it/s][ABatches: 100%|██████████| 138/138 [00:02<00:00, 54.46it/s]
Batches: 0%| | 0/138 [00:00<?, ?it/s][A
Batches: 3%|▎ | 4/138 [00:00<00:03, 36.58it/s][A
Batches: 6%|▌ | 8/138 [00:00<00:03, 37.11it/s][A
Batches: 9%|▉ | 13/138 [00:00<00:03, 38.51it/s][A
Batches: 13%|█▎ | 18/138 [00:00<00:03, 39.73it/s][A
Batches: 17%|█▋ | 23/138 [00:00<00:02, 41.30it/s][A
Batches: 20%|██ | 28/138 [00:00<00:02, 42.41it/s][A
Batches: 24%|██▍ | 33/138 [00:00<00:02, 42.96it/s][A
Batches: 28%|██▊ | 38/138 [00:00<00:02, 44.15it/s][A
Batches: 31%|███ | 43/138 [00:00<00:02, 44.88it/s][A
Batches: 35%|███▍ | 48/138 [00:01<00:02, 44.95it/s][A
Batches: 38%|███▊ | 53/138 [00:01<00:01, 45.58it/s][A
Batches: 42%|████▏ | 58/138 [00:01<00:01, 45.61it/s][A
Batches: 46%|████▌ | 63/138 [00:01<00:01, 45.73it/s][A
Batches: 49%|████▉ | 68/138 [00:01<00:01, 46.79it/s][A
Batches: 53%|█████▎ | 73/138 [00:01<00:01, 47.16it/s][A
Batches: 57%|█████▋ | 78/138 [00:01<00:01, 47.11it/s][A
Batches: 60%|██████ | 83/138 [00:01<00:01, 47.64it/s][A
Batches: 64%|██████▍ | 88/138 [00:01<00:01, 47.87it/s][A
Batches: 67%|██████▋ | 93/138 [00:02<00:00, 47.69it/s][A
Batches: 71%|███████ | 98/138 [00:02<00:00, 47.28it/s][A
Batches: 76%|███████▌ | 105/138 [00:02<00:00, 50.75it/s][A
Batches: 80%|████████ | 111/138 [00:02<00:00, 52.92it/s][A
Batches: 85%|████████▍ | 117/138 [00:02<00:00, 54.79it/s][A
Batches: 89%|████████▉ | 123/138 [00:02<00:00, 56.21it/s][A
Batches: 94%|█████████▍| 130/138 [00:02<00:00, 57.38it/s][A
Batches: 99%|█████████▉| 137/138 [00:02<00:00, 59.37it/s][ABatches: 100%|██████████| 138/138 [00:02<00:00, 49.04it/s]
2021-10-13 02:02:21 - INFO - __call__ - 103 : Cosine-Similarity : Pearson: 0.5265 Spearman: 0.5793
2021-10-13 02:02:21 - INFO - __call__ - 105 : Manhattan-Distance: Pearson: 0.5970 Spearman: 0.6200
2021-10-13 02:02:21 - INFO - __call__ - 107 : Euclidean-Distance: Pearson: 0.5954 Spearman: 0.6183
2021-10-13 02:02:21 - INFO - __call__ - 109 : Dot-Product-Similarity: Pearson: 0.3362 Spearman: 0.3162
2021-10-13 02:02:21 - INFO - train - 102 : No improvement over previous best eval score (0.579297 vs 0.599323), patience = 19
1it [00:08, 8.58s/it]2it [00:08, 6.07s/it]3it [00:08, 4.29s/it]4it [00:09, 3.05s/it]5it [00:09, 2.19s/it]6it [00:09, 1.58s/it]7it [00:09, 1.16s/it]8it [00:09, 1.16it/s]9it [00:09, 1.52it/s]10it [00:10, 2.01it/s]11it [00:10, 2.55it/s]12it [00:10, 3.13it/s]13it [00:10, 3.74it/s]14it [00:10, 4.29it/s]15it [00:10, 4.73it/s]16it [00:11, 5.05it/s]17it [00:11, 5.55it/s]18it [00:11, 5.97it/s]2021-10-13 02:02:23 - INFO - train - 75 : Epoch : 1, train_step : 36/470, loss_value : 0.001809923684858303
19it [00:11, 6.17it/s]20it [00:11, 6.33it/s]21it [00:11, 6.18it/s]22it [00:11, 6.33it/s]23it [00:12, 6.23it/s]24it [00:12, 6.45it/s]25it [00:12, 6.68it/s]26it [00:12, 6.96it/s]27it [00:12, 6.77it/s]28it [00:12, 6.52it/s]29it [00:12, 6.30it/s]30it [00:13, 6.57it/s]31it [00:13, 6.51it/s]32it [00:13, 6.34it/s]33it [00:13, 6.22it/s]34it [00:13, 6.16it/s]35it [00:13, 6.42it/s]36it [00:14, 6.51it/s]2021-10-13 02:02:26 - INFO - train - 75 : Epoch : 1, train_step : 72/470, loss_value : 0.0014678220969573078
37it [00:14, 6.81it/s]38it [00:14, 6.56it/s]39it [00:14, 6.58it/s]40it [00:14, 6.58it/s]41it [00:14, 6.74it/s]42it [00:14, 6.80it/s]43it [00:15, 6.75it/s]44it [00:15, 6.80it/s]45it [00:15, 6.81it/s]46it [00:15, 6.75it/s]47it [00:15, 6.76it/s]2021-10-13 02:02:28 - INFO - __call__ - 72 : EmbeddingSimilarityEvaluator: Evaluating the model on dataset in epoch 1 after 48 steps:
Batches: 0%| | 0/138 [00:00<?, ?it/s][A
Batches: 4%|▎ | 5/138 [00:00<00:02, 45.56it/s][A
Batches: 8%|▊ | 11/138 [00:00<00:02, 47.18it/s][A
Batches: 12%|█▏ | 17/138 [00:00<00:02, 48.96it/s][A
Batches: 17%|█▋ | 23/138 [00:00<00:02, 50.72it/s][A
Batches: 21%|██ | 29/138 [00:00<00:02, 51.73it/s][A
Batches: 25%|██▌ | 35/138 [00:00<00:01, 53.38it/s][A
Batches: 30%|██▉ | 41/138 [00:00<00:01, 54.82it/s][A
Batches: 34%|███▍ | 47/138 [00:00<00:01, 56.11it/s][A
Batches: 38%|███▊ | 53/138 [00:00<00:01, 57.19it/s][A
Batches: 43%|████▎ | 60/138 [00:01<00:01, 58.12it/s][A
Batches: 49%|████▊ | 67/138 [00:01<00:01, 58.96it/s][A
Batches: 54%|█████▎ | 74/138 [00:01<00:01, 59.67it/s][A
Batches: 59%|█████▊ | 81/138 [00:01<00:00, 60.27it/s][A
Batches: 64%|██████▍ | 88/138 [00:01<00:00, 60.83it/s][A
Batches: 69%|██████▉ | 95/138 [00:01<00:00, 61.38it/s][A
Batches: 74%|███████▍ | 102/138 [00:01<00:00, 61.99it/s][A
Batches: 79%|███████▉ | 109/138 [00:01<00:00, 62.67it/s][A
Batches: 84%|████████▍ | 116/138 [00:01<00:00, 63.02it/s][A
Batches: 89%|████████▉ | 123/138 [00:02<00:00, 63.29it/s][A
Batches: 94%|█████████▍| 130/138 [00:02<00:00, 63.87it/s][A
Batches: 99%|█████████▉| 137/138 [00:02<00:00, 65.59it/s][ABatches: 100%|██████████| 138/138 [00:02<00:00, 59.89it/s]
Batches: 0%| | 0/138 [00:00<?, ?it/s][A
Batches: 4%|▎ | 5/138 [00:00<00:03, 41.93it/s][A
Batches: 7%|▋ | 10/138 [00:00<00:02, 43.65it/s][A
Batches: 12%|█▏ | 16/138 [00:00<00:02, 45.52it/s][A
Batches: 16%|█▌ | 22/138 [00:00<00:02, 47.52it/s][A
Batches: 20%|██ | 28/138 [00:00<00:02, 49.76it/s][A
Batches: 25%|██▍ | 34/138 [00:00<00:02, 51.30it/s][A
Batches: 29%|██▉ | 40/138 [00:00<00:01, 52.23it/s][A
Batches: 33%|███▎ | 46/138 [00:00<00:01, 52.94it/s][A
Batches: 38%|███▊ | 52/138 [00:00<00:01, 54.38it/s][A
Batches: 42%|████▏ | 58/138 [00:01<00:01, 55.65it/s][A
Batches: 46%|████▋ | 64/138 [00:01<00:01, 56.68it/s][A
Batches: 51%|█████ | 70/138 [00:01<00:01, 57.54it/s][A
Batches: 55%|█████▌ | 76/138 [00:01<00:01, 57.07it/s][A
Batches: 60%|██████ | 83/138 [00:01<00:00, 57.99it/s][A
Batches: 65%|██████▌ | 90/138 [00:01<00:00, 58.73it/s][A
Batches: 70%|███████ | 97/138 [00:01<00:00, 59.32it/s][A
Batches: 75%|███████▌ | 104/138 [00:01<00:00, 60.48it/s][A
Batches: 80%|████████ | 111/138 [00:01<00:00, 61.11it/s][A
Batches: 86%|████████▌ | 118/138 [00:02<00:00, 61.28it/s][A
Batches: 91%|█████████ | 125/138 [00:02<00:00, 62.34it/s][A
Batches: 96%|█████████▌| 132/138 [00:02<00:00, 63.22it/s][ABatches: 100%|██████████| 138/138 [00:02<00:00, 57.86it/s]
2021-10-13 02:02:35 - INFO - __call__ - 103 : Cosine-Similarity : Pearson: 0.5165 Spearman: 0.5599
2021-10-13 02:02:35 - INFO - __call__ - 105 : Manhattan-Distance: Pearson: 0.5842 Spearman: 0.6044
2021-10-13 02:02:35 - INFO - __call__ - 107 : Euclidean-Distance: Pearson: 0.5826 Spearman: 0.6026
2021-10-13 02:02:35 - INFO - __call__ - 109 : Dot-Product-Similarity: Pearson: 0.3254 Spearman: 0.3064
2021-10-13 02:02:35 - INFO - train - 102 : No improvement over previous best eval score (0.559934 vs 0.599323), patience = 18
48it [00:23, 2.34s/it]49it [00:23, 1.70s/it]50it [00:23, 1.23s/it]51it [00:23, 1.10it/s]52it [00:23, 1.48it/s]53it [00:23, 1.91it/s]54it [00:24, 2.48it/s]2021-10-13 02:02:36 - INFO - train - 75 : Epoch : 1, train_step : 108/470, loss_value : 0.0013188011119685445
55it [00:24, 3.07it/s]56it [00:24, 3.64it/s]57it [00:24, 4.21it/s]58it [00:24, 4.66it/s]59it [00:24, 4.67it/s]60it [00:25, 5.19it/s]61it [00:25, 5.55it/s]62it [00:25, 6.06it/s]63it [00:25, 6.21it/s]64it [00:25, 6.12it/s]65it [00:25, 6.21it/s]66it [00:25, 6.41it/s]67it [00:26, 6.58it/s]68it [00:26, 6.86it/s]69it [00:26, 6.70it/s]70it [00:26, 6.49it/s]71it [00:26, 6.49it/s]72it [00:26, 6.78it/s]2021-10-13 02:02:39 - INFO - train - 75 : Epoch : 1, train_step : 144/470, loss_value : 0.0011175030457606125
73it [00:26, 6.56it/s]74it [00:27, 6.44it/s]75it [00:27, 6.30it/s]76it [00:27, 6.26it/s]77it [00:27, 6.13it/s]78it [00:27, 6.18it/s]79it [00:27, 6.33it/s]80it [00:28, 6.58it/s]81it [00:28, 6.35it/s]82it [00:28, 6.56it/s]83it [00:28, 6.54it/s]84it [00:28, 6.31it/s]85it [00:28, 6.34it/s]86it [00:29, 6.26it/s]87it [00:29, 6.09it/s]88it [00:29, 6.31it/s]89it [00:29, 6.17it/s]90it [00:29, 6.40it/s]2021-10-13 02:02:42 - INFO - train - 75 : Epoch : 1, train_step : 180/470, loss_value : 0.0010478940340463952
91it [00:29, 6.42it/s]92it [00:29, 6.14it/s]93it [00:30, 6.04it/s]94it [00:30, 6.49it/s]94it [00:30, 3.10it/s]
0it [00:00, ?it/s]2021-10-13 02:02:43 - INFO - __call__ - 72 : EmbeddingSimilarityEvaluator: Evaluating the model on dataset in epoch 2 after 1 steps:
Batches: 0%| | 0/138 [00:00<?, ?it/s][A
Batches: 4%|▎ | 5/138 [00:00<00:03, 42.64it/s][A
Batches: 7%|▋ | 10/138 [00:00<00:02, 43.78it/s][A
Batches: 11%|█ | 15/138 [00:00<00:02, 45.19it/s][A
Batches: 14%|█▍ | 20/138 [00:00<00:02, 45.78it/s][A
Batches: 17%|█▋ | 24/138 [00:00<00:02, 43.08it/s][A
Batches: 20%|██ | 28/138 [00:00<00:02, 40.73it/s][A
Batches: 24%|██▍ | 33/138 [00:00<00:02, 41.62it/s][A
Batches: 28%|██▊ | 39/138 [00:00<00:02, 44.56it/s][A
Batches: 33%|███▎ | 45/138 [00:00<00:01, 47.00it/s][A
Batches: 37%|███▋ | 51/138 [00:01<00:01, 47.54it/s][A
Batches: 41%|████ | 56/138 [00:01<00:01, 45.11it/s][A
Batches: 44%|████▍ | 61/138 [00:01<00:01, 44.91it/s][A
Batches: 49%|████▊ | 67/138 [00:01<00:01, 47.80it/s][A
Batches: 53%|█████▎ | 73/138 [00:01<00:01, 50.07it/s][A
Batches: 57%|█████▋ | 79/138 [00:01<00:01, 50.74it/s][A
Batches: 62%|██████▏ | 85/138 [00:01<00:01, 52.68it/s][A
Batches: 66%|██████▌ | 91/138 [00:01<00:00, 51.24it/s][A
Batches: 70%|███████ | 97/138 [00:02<00:00, 50.32it/s][A
Batches: 75%|███████▍ | 103/138 [00:02<00:00, 49.42it/s][A
Batches: 79%|███████▉ | 109/138 [00:02<00:00, 49.57it/s][A
Batches: 83%|████████▎ | 114/138 [00:02<00:00, 49.55it/s][A
Batches: 87%|████████▋ | 120/138 [00:02<00:00, 50.94it/s][A
Batches: 92%|█████████▏| 127/138 [00:02<00:00, 53.48it/s][A
Batches: 96%|█████████▋| 133/138 [00:02<00:00, 55.22it/s][ABatches: 100%|██████████| 138/138 [00:02<00:00, 49.71it/s]
Batches: 0%| | 0/138 [00:00<?, ?it/s][A
Batches: 3%|▎ | 4/138 [00:00<00:03, 39.37it/s][A
Batches: 7%|▋ | 9/138 [00:00<00:03, 41.04it/s][A
Batches: 10%|█ | 14/138 [00:00<00:02, 43.02it/s][A
Batches: 14%|█▍ | 19/138 [00:00<00:02, 44.71it/s][A
Batches: 18%|█▊ | 25/138 [00:00<00:02, 45.72it/s][A
Batches: 21%|██ | 29/138 [00:00<00:02, 42.54it/s][A
Batches: 24%|██▍ | 33/138 [00:00<00:02, 41.20it/s][A
Batches: 27%|██▋ | 37/138 [00:00<00:02, 40.72it/s][A
Batches: 30%|██▉ | 41/138 [00:00<00:02, 40.18it/s][A
Batches: 33%|███▎ | 46/138 [00:01<00:02, 41.61it/s][A
Batches: 37%|███▋ | 51/138 [00:01<00:02, 42.34it/s][A
Batches: 41%|████▏ | 57/138 [00:01<00:01, 44.79it/s][A
Batches: 46%|████▌ | 63/138 [00:01<00:01, 47.42it/s][A
Batches: 50%|█████ | 69/138 [00:01<00:01, 49.01it/s][A
Batches: 54%|█████▍ | 75/138 [00:01<00:01, 50.76it/s][A
Batches: 59%|█████▊ | 81/138 [00:01<00:01, 50.57it/s][A
Batches: 63%|██████▎ | 87/138 [00:01<00:01, 50.52it/s][A
Batches: 67%|██████▋ | 93/138 [00:01<00:00, 49.41it/s][A
Batches: 71%|███████ | 98/138 [00:02<00:00, 49.46it/s][A
Batches: 75%|███████▌ | 104/138 [00:02<00:00, 49.90it/s][A
Batches: 80%|███████▉ | 110/138 [00:02<00:00, 49.62it/s][A
Batches: 84%|████████▍ | 116/138 [00:02<00:00, 49.62it/s][A
Batches: 88%|████████▊ | 121/138 [00:02<00:00, 49.32it/s][A
Batches: 91%|█████████▏| 126/138 [00:02<00:00, 48.89it/s][A
Batches: 96%|█████████▌| 132/138 [00:02<00:00, 50.21it/s][A
Batches: 100%|██████████| 138/138 [00:02<00:00, 50.99it/s][ABatches: 100%|██████████| 138/138 [00:02<00:00, 47.78it/s]
2021-10-13 02:02:52 - INFO - __call__ - 103 : Cosine-Similarity : Pearson: 0.5164 Spearman: 0.5563
2021-10-13 02:02:52 - INFO - __call__ - 105 : Manhattan-Distance: Pearson: 0.5811 Spearman: 0.6000
2021-10-13 02:02:52 - INFO - __call__ - 107 : Euclidean-Distance: Pearson: 0.5791 Spearman: 0.5978
2021-10-13 02:02:52 - INFO - __call__ - 109 : Dot-Product-Similarity: Pearson: 0.3375 Spearman: 0.3221
2021-10-13 02:02:52 - INFO - train - 102 : No improvement over previous best eval score (0.556288 vs 0.599323), patience = 17
1it [00:09, 9.32s/it]2it [00:09, 6.57s/it]3it [00:09, 4.65s/it]4it [00:09, 3.29s/it]5it [00:09, 2.34s/it]6it [00:10, 1.69s/it]7it [00:10, 1.23s/it]8it [00:10, 1.11it/s]9it [00:10, 1.46it/s]10it [00:10, 1.93it/s]11it [00:10, 2.42it/s]12it [00:11, 2.95it/s]13it [00:11, 3.54it/s]14it [00:11, 4.04it/s]15it [00:11, 4.64it/s]16it [00:11, 5.12it/s]17it [00:11, 5.46it/s]18it [00:11, 5.91it/s]2021-10-13 02:02:54 - INFO - train - 75 : Epoch : 2, train_step : 54/470, loss_value : 0.0014475788064171663
19it [00:12, 6.19it/s]20it [00:12, 6.62it/s]21it [00:12, 6.61it/s]22it [00:12, 6.70it/s]23it [00:12, 6.88it/s]24it [00:12, 6.90it/s]25it [00:12, 6.61it/s]26it [00:13, 6.43it/s]27it [00:13, 6.26it/s]28it [00:13, 6.32it/s]29it [00:13, 6.56it/s]30it [00:13, 6.58it/s]31it [00:13, 6.38it/s]32it [00:14, 6.46it/s]33it [00:14, 6.55it/s]34it [00:14, 6.62it/s]35it [00:14, 6.67it/s]36it [00:14, 6.72it/s]2021-10-13 02:02:57 - INFO - train - 75 : Epoch : 2, train_step : 108/470, loss_value : 0.0005668225154901544
37it [00:14, 6.56it/s]38it [00:14, 6.66it/s]39it [00:15, 6.69it/s]40it [00:15, 6.79it/s]41it [00:15, 6.74it/s]42it [00:15, 6.55it/s]43it [00:15, 6.77it/s]44it [00:15, 6.86it/s]45it [00:15, 6.95it/s]46it [00:16, 7.05it/s]47it [00:16, 7.08it/s]2021-10-13 02:02:59 - INFO - __call__ - 72 : EmbeddingSimilarityEvaluator: Evaluating the model on dataset in epoch 2 after 48 steps:
Batches: 0%| | 0/138 [00:00<?, ?it/s][A
Batches: 4%|▎ | 5/138 [00:00<00:02, 45.75it/s][A
Batches: 7%|▋ | 10/138 [00:00<00:02, 46.71it/s][A
Batches: 12%|█▏ | 16/138 [00:00<00:02, 47.82it/s][A
Batches: 16%|█▌ | 22/138 [00:00<00:02, 49.00it/s][A
Batches: 20%|█▉ | 27/138 [00:00<00:02, 49.06it/s][A
Batches: 24%|██▍ | 33/138 [00:00<00:02, 50.22it/s][A
Batches: 28%|██▊ | 39/138 [00:00<00:01, 52.11it/s][A
Batches: 33%|███▎ | 45/138 [00:00<00:01, 53.92it/s][A
Batches: 37%|███▋ | 51/138 [00:00<00:01, 55.45it/s][A
Batches: 41%|████▏ | 57/138 [00:01<00:01, 56.60it/s][A
Batches: 46%|████▋ | 64/138 [00:01<00:01, 57.84it/s][A
Batches: 51%|█████▏ | 71/138 [00:01<00:01, 58.78it/s][A
Batches: 57%|█████▋ | 78/138 [00:01<00:01, 59.48it/s][A
Batches: 62%|██████▏ | 85/138 [00:01<00:00, 60.49it/s][A
Batches: 67%|██████▋ | 92/138 [00:01<00:00, 61.11it/s][A
Batches: 72%|███████▏ | 99/138 [00:01<00:00, 61.75it/s][A
Batches: 77%|███████▋ | 106/138 [00:01<00:00, 62.65it/s][A
Batches: 82%|████████▏ | 113/138 [00:01<00:00, 62.73it/s][A
Batches: 87%|████████▋ | 120/138 [00:02<00:00, 63.36it/s][A
Batches: 92%|█████████▏| 127/138 [00:02<00:00, 64.23it/s][A
Batches: 97%|█████████▋| 134/138 [00:02<00:00, 65.44it/s][ABatches: 100%|██████████| 138/138 [00:02<00:00, 59.13it/s]
Batches: 0%| | 0/138 [00:00<?, ?it/s][A
Batches: 4%|▎ | 5/138 [00:00<00:03, 42.06it/s][A
Batches: 7%|▋ | 10/138 [00:00<00:02, 43.76it/s][A
Batches: 12%|█▏ | 16/138 [00:00<00:02, 45.70it/s][A
Batches: 16%|█▌ | 22/138 [00:00<00:02, 47.62it/s][A
Batches: 20%|██ | 28/138 [00:00<00:02, 49.69it/s][A
Batches: 25%|██▍ | 34/138 [00:00<00:02, 51.47it/s][A
Batches: 29%|██▉ | 40/138 [00:00<00:01, 53.27it/s][A
Batches: 33%|███▎ | 46/138 [00:00<00:01, 54.82it/s][A
Batches: 38%|███▊ | 52/138 [00:00<00:01, 56.21it/s][A
Batches: 42%|████▏ | 58/138 [00:01<00:01, 56.95it/s][A
Batches: 46%|████▋ | 64/138 [00:01<00:01, 57.71it/s][A
Batches: 51%|█████▏ | 71/138 [00:01<00:01, 58.67it/s][A
Batches: 57%|█████▋ | 78/138 [00:01<00:01, 59.22it/s][A
Batches: 62%|██████▏ | 85/138 [00:01<00:00, 60.10it/s][A
Batches: 67%|██████▋ | 92/138 [00:01<00:00, 60.81it/s][A
Batches: 72%|███████▏ | 99/138 [00:01<00:00, 61.49it/s][A
Batches: 77%|███████▋ | 106/138 [00:01<00:00, 62.39it/s][A
Batches: 82%|████████▏ | 113/138 [00:01<00:00, 62.08it/s][A
Batches: 87%|████████▋ | 120/138 [00:02<00:00, 62.54it/s][A
Batches: 92%|█████████▏| 127/138 [00:02<00:00, 63.21it/s][A
Batches: 97%|█████████▋| 134/138 [00:02<00:00, 64.47it/s][ABatches: 100%|██████████| 138/138 [00:02<00:00, 58.93it/s]
2021-10-13 02:03:06 - INFO - __call__ - 103 : Cosine-Similarity : Pearson: 0.5111 Spearman: 0.5458
2021-10-13 02:03:06 - INFO - __call__ - 105 : Manhattan-Distance: Pearson: 0.5741 Spearman: 0.5911
2021-10-13 02:03:06 - INFO - __call__ - 107 : Euclidean-Distance: Pearson: 0.5721 Spearman: 0.5888
2021-10-13 02:03:06 - INFO - __call__ - 109 : Dot-Product-Similarity: Pearson: 0.3317 Spearman: 0.3156
2021-10-13 02:03:06 - INFO - train - 102 : No improvement over previous best eval score (0.545841 vs 0.599323), patience = 16
48it [00:23, 2.28s/it]49it [00:23, 1.64s/it]50it [00:23, 1.19s/it]51it [00:23, 1.14it/s]52it [00:24, 1.51it/s]53it [00:24, 1.95it/s]54it [00:24, 2.50it/s]2021-10-13 02:03:07 - INFO - train - 75 : Epoch : 2, train_step : 162/470, loss_value : 0.0012185796731500886
55it [00:24, 3.02it/s]56it [00:24, 3.45it/s]57it [00:24, 3.99it/s]58it [00:25, 4.43it/s]59it [00:25, 5.01it/s]60it [00:25, 5.51it/s]61it [00:25, 5.69it/s]62it [00:25, 6.09it/s]63it [00:25, 6.22it/s]64it [00:25, 6.44it/s]65it [00:26, 6.27it/s]66it [00:26, 6.57it/s]67it [00:26, 6.56it/s]68it [00:26, 6.63it/s]69it [00:26, 6.67it/s]70it [00:26, 6.45it/s]71it [00:27, 6.29it/s]72it [00:27, 6.45it/s]2021-10-13 02:03:10 - INFO - train - 75 : Epoch : 2, train_step : 216/470, loss_value : 0.0007857047332638305
73it [00:27, 6.29it/s]74it [00:27, 6.41it/s]75it [00:27, 6.62it/s]76it [00:27, 6.45it/s]77it [00:27, 6.50it/s]78it [00:28, 6.74it/s]79it [00:28, 6.70it/s]80it [00:28, 6.55it/s]81it [00:28, 6.54it/s]82it [00:28, 6.75it/s]83it [00:28, 6.92it/s]84it [00:28, 6.60it/s]85it [00:29, 5.65it/s]86it [00:29, 5.78it/s]87it [00:29, 6.09it/s]88it [00:29, 6.10it/s]89it [00:29, 6.15it/s]90it [00:29, 6.46it/s]2021-10-13 02:03:12 - INFO - train - 75 : Epoch : 2, train_step : 270/470, loss_value : 0.0013156578760471246
91it [00:30, 6.35it/s]92it [00:30, 6.63it/s]93it [00:30, 6.74it/s]94it [00:30, 7.36it/s]94it [00:30, 3.08it/s]
0it [00:00, ?it/s]2021-10-13 02:03:13 - INFO - __call__ - 72 : EmbeddingSimilarityEvaluator: Evaluating the model on dataset in epoch 3 after 1 steps:
Batches: 0%| | 0/138 [00:00<?, ?it/s][A
Batches: 4%|▎ | 5/138 [00:00<00:02, 45.81it/s][A
Batches: 8%|▊ | 11/138 [00:00<00:02, 47.43it/s][A
Batches: 12%|█▏ | 17/138 [00:00<00:02, 49.15it/s][A
Batches: 17%|█▋ | 23/138 [00:00<00:02, 50.89it/s][A
Batches: 21%|██ | 29/138 [00:00<00:02, 52.03it/s][A
Batches: 25%|██▌ | 35/138 [00:00<00:01, 52.73it/s][A
Batches: 30%|██▉ | 41/138 [00:00<00:01, 54.22it/s][A
Batches: 34%|███▍ | 47/138 [00:00<00:01, 55.49it/s][A
Batches: 38%|███▊ | 53/138 [00:00<00:01, 56.54it/s][A
Batches: 43%|████▎ | 59/138 [00:01<00:01, 57.51it/s][A
Batches: 48%|████▊ | 66/138 [00:01<00:01, 58.37it/s][A
Batches: 53%|█████▎ | 73/138 [00:01<00:01, 59.11it/s][A
Batches: 58%|█████▊ | 80/138 [00:01<00:00, 59.77it/s][A
Batches: 63%|██████▎ | 87/138 [00:01<00:00, 60.55it/s][A
Batches: 68%|██████▊ | 94/138 [00:01<00:00, 61.09it/s][A
Batches: 73%|███████▎ | 101/138 [00:01<00:00, 61.65it/s][A
Batches: 78%|███████▊ | 108/138 [00:01<00:00, 62.09it/s][A
Batches: 83%|████████▎ | 115/138 [00:01<00:00, 62.57it/s][A
Batches: 88%|████████▊ | 122/138 [00:02<00:00, 63.26it/s][A
Batches: 93%|█████████▎| 129/138 [00:02<00:00, 64.01it/s][A
Batches: 99%|█████████▊| 136/138 [00:02<00:00, 65.49it/s][ABatches: 100%|██████████| 138/138 [00:02<00:00, 59.56it/s]
Batches: 0%| | 0/138 [00:00<?, ?it/s][A
Batches: 4%|▎ | 5/138 [00:00<00:03, 42.32it/s][A
Batches: 7%|▋ | 10/138 [00:00<00:02, 44.15it/s][A
Batches: 12%|█▏ | 16/138 [00:00<00:02, 46.21it/s][A
Batches: 16%|█▌ | 22/138 [00:00<00:02, 48.23it/s][A
Batches: 20%|██ | 28/138 [00:00<00:02, 50.25it/s][A
Batches: 25%|██▍ | 34/138 [00:00<00:01, 52.01it/s][A
Batches: 29%|██▉ | 40/138 [00:00<00:01, 53.62it/s][A
Batches: 33%|███▎ | 46/138 [00:00<00:01, 55.01it/s][A
Batches: 38%|███▊ | 52/138 [00:00<00:01, 56.37it/s][A
Batches: 42%|████▏ | 58/138 [00:01<00:01, 57.33it/s][A
Batches: 47%|████▋ | 65/138 [00:01<00:01, 58.21it/s][A
Batches: 52%|█████▏ | 72/138 [00:01<00:01, 58.89it/s][A
Batches: 57%|█████▋ | 79/138 [00:01<00:00, 59.50it/s][A
Batches: 62%|██████▏ | 86/138 [00:01<00:00, 60.48it/s][A
Batches: 67%|██████▋ | 93/138 [00:01<00:00, 60.67it/s][A
Batches: 72%|███████▏ | 100/138 [00:01<00:00, 61.44it/s][A
Batches: 78%|███████▊ | 107/138 [00:01<00:00, 62.27it/s][A
Batches: 83%|████████▎ | 114/138 [00:01<00:00, 62.95it/s][A
Batches: 88%|████████▊ | 121/138 [00:02<00:00, 63.58it/s][A
Batches: 93%|█████████▎| 128/138 [00:02<00:00, 64.31it/s][A
Batches: 98%|█████████▊| 135/138 [00:02<00:00, 65.46it/s][ABatches: 100%|██████████| 138/138 [00:02<00:00, 59.39it/s]
2021-10-13 02:03:18 - INFO - __call__ - 103 : Cosine-Similarity : Pearson: 0.5052 Spearman: 0.5346
2021-10-13 02:03:18 - INFO - __call__ - 105 : Manhattan-Distance: Pearson: 0.5651 Spearman: 0.5799
2021-10-13 02:03:18 - INFO - __call__ - 107 : Euclidean-Distance: Pearson: 0.5633 Spearman: 0.5778
2021-10-13 02:03:18 - INFO - __call__ - 109 : Dot-Product-Similarity: Pearson: 0.3321 Spearman: 0.3167
2021-10-13 02:03:18 - INFO - train - 102 : No improvement over previous best eval score (0.534564 vs 0.599323), patience = 15
1it [00:04, 4.97s/it]2it [00:05, 3.53s/it]3it [00:05, 2.53s/it]4it [00:05, 1.81s/it]5it [00:05, 1.32s/it]6it [00:05, 1.03it/s]7it [00:05, 1.38it/s]8it [00:06, 1.81it/s]9it [00:06, 2.32it/s]10it [00:06, 2.88it/s]11it [00:06, 3.50it/s]12it [00:06, 4.06it/s]13it [00:06, 4.58it/s]14it [00:07, 4.91it/s]15it [00:07, 5.44it/s]16it [00:07, 5.76it/s]17it [00:07, 5.78it/s]18it [00:07, 6.30it/s]2021-10-13 02:03:21 - INFO - train - 75 : Epoch : 3, train_step : 72/470, loss_value : 0.0005203897134278021
19it [00:07, 6.34it/s]20it [00:07, 6.36it/s]21it [00:08, 6.40it/s]22it [00:08, 6.43it/s]23it [00:08, 6.46it/s]24it [00:08, 6.61it/s]25it [00:08, 6.61it/s]26it [00:08, 6.65it/s]27it [00:08, 6.60it/s]28it [00:09, 6.55it/s]29it [00:09, 6.22it/s]30it [00:09, 6.42it/s]31it [00:09, 6.53it/s]32it [00:09, 6.50it/s]33it [00:09, 6.25it/s]34it [00:10, 6.39it/s]35it [00:10, 6.25it/s]36it [00:10, 6.00it/s]2021-10-13 02:03:23 - INFO - train - 75 : Epoch : 3, train_step : 144/470, loss_value : 0.00041276144960041467
37it [00:10, 6.36it/s]38it [00:10, 6.22it/s]39it [00:10, 6.60it/s]40it [00:10, 6.66it/s]41it [00:11, 6.38it/s]42it [00:11, 6.53it/s]43it [00:11, 6.29it/s]44it [00:11, 6.34it/s]45it [00:11, 6.57it/s]46it [00:11, 6.47it/s]47it [00:12, 6.55it/s]2021-10-13 02:03:25 - INFO - __call__ - 72 : EmbeddingSimilarityEvaluator: Evaluating the model on dataset in epoch 3 after 48 steps:
Batches: 0%| | 0/138 [00:00<?, ?it/s][A
Batches: 4%|▎ | 5/138 [00:00<00:02, 46.16it/s][A
Batches: 8%|▊ | 11/138 [00:00<00:02, 47.81it/s][A
Batches: 12%|█▏ | 17/138 [00:00<00:02, 49.59it/s][A
Batches: 17%|█▋ | 23/138 [00:00<00:02, 51.14it/s][A
Batches: 21%|██ | 29/138 [00:00<00:02, 52.61it/s][A
Batches: 25%|██▌ | 35/138 [00:00<00:01, 54.15it/s][A
Batches: 30%|██▉ | 41/138 [00:00<00:01, 55.38it/s][A
Batches: 34%|███▍ | 47/138 [00:00<00:01, 56.60it/s][A
Batches: 39%|███▉ | 54/138 [00:00<00:01, 57.63it/s][A
Batches: 44%|████▍ | 61/138 [00:01<00:01, 58.43it/s][A
Batches: 49%|████▉ | 68/138 [00:01<00:01, 59.21it/s][A
Batches: 54%|█████▍ | 75/138 [00:01<00:01, 59.67it/s][A
Batches: 59%|█████▉ | 82/138 [00:01<00:00, 60.37it/s][A
Batches: 64%|██████▍ | 89/138 [00:01<00:00, 60.72it/s][A
Batches: 70%|██████▉ | 96/138 [00:01<00:00, 61.41it/s][A
Batches: 75%|███████▍ | 103/138 [00:01<00:00, 62.23it/s][A
Batches: 80%|███████▉ | 110/138 [00:01<00:00, 62.98it/s][A
Batches: 85%|████████▍ | 117/138 [00:01<00:00, 63.40it/s][A
Batches: 90%|████████▉ | 124/138 [00:02<00:00, 64.04it/s][A
Batches: 95%|█████████▍| 131/138 [00:02<00:00, 64.91it/s][ABatches: 100%|██████████| 138/138 [00:02<00:00, 60.31it/s]
Batches: 0%| | 0/138 [00:00<?, ?it/s][A
Batches: 4%|▎ | 5/138 [00:00<00:03, 42.65it/s][A
Batches: 7%|▋ | 10/138 [00:00<00:02, 44.50it/s][A
Batches: 12%|█▏ | 16/138 [00:00<00:02, 46.62it/s][A
Batches: 16%|█▌ | 22/138 [00:00<00:02, 48.76it/s][A
Batches: 20%|██ | 28/138 [00:00<00:02, 50.76it/s][A
Batches: 25%|██▍ | 34/138 [00:00<00:01, 52.47it/s][A
Batches: 29%|██▉ | 40/138 [00:00<00:01, 54.14it/s][A
Batches: 33%|███▎ | 46/138 [00:00<00:01, 54.78it/s][A
Batches: 38%|███▊ | 52/138 [00:00<00:01, 56.02it/s][A
Batches: 42%|████▏ | 58/138 [00:01<00:01, 56.97it/s][A
Batches: 47%|████▋ | 65/138 [00:01<00:01, 58.01it/s][A
Batches: 52%|█████▏ | 72/138 [00:01<00:01, 58.79it/s][A
Batches: 57%|█████▋ | 79/138 [00:01<00:00, 59.42it/s][A
Batches: 62%|██████▏ | 86/138 [00:01<00:00, 60.39it/s][A
Batches: 67%|██████▋ | 93/138 [00:01<00:00, 61.14it/s][A
Batches: 72%|███████▏ | 100/138 [00:01<00:00, 61.44it/s][A
Batches: 78%|███████▊ | 107/138 [00:01<00:00, 62.19it/s][A
Batches: 83%|████████▎ | 114/138 [00:01<00:00, 62.76it/s][A
Batches: 88%|████████▊ | 121/138 [00:02<00:00, 63.42it/s][A
Batches: 93%|█████████▎| 128/138 [00:02<00:00, 64.18it/s][A
Batches: 98%|█████████▊| 135/138 [00:02<00:00, 65.02it/s][ABatches: 100%|██████████| 138/138 [00:02<00:00, 59.38it/s]
2021-10-13 02:03:30 - INFO - __call__ - 103 : Cosine-Similarity : Pearson: 0.5044 Spearman: 0.5325
2021-10-13 02:03:30 - INFO - __call__ - 105 : Manhattan-Distance: Pearson: 0.5641 Spearman: 0.5787
2021-10-13 02:03:30 - INFO - __call__ - 107 : Euclidean-Distance: Pearson: 0.5624 Spearman: 0.5767
2021-10-13 02:03:30 - INFO - __call__ - 109 : Dot-Product-Similarity: Pearson: 0.3287 Spearman: 0.3134
2021-10-13 02:03:30 - INFO - train - 102 : No improvement over previous best eval score (0.532473 vs 0.599323), patience = 14
48it [00:17, 1.59s/it]49it [00:17, 1.17s/it]50it [00:17, 1.17it/s]51it [00:17, 1.54it/s]52it [00:17, 1.98it/s]53it [00:17, 2.48it/s]54it [00:18, 3.02it/s]2021-10-13 02:03:31 - INFO - train - 75 : Epoch : 3, train_step : 216/470, loss_value : 0.0013936128036423018
55it [00:18, 3.61it/s]56it [00:18, 4.09it/s]57it [00:18, 4.71it/s]58it [00:18, 5.02it/s]59it [00:18, 5.56it/s]60it [00:18, 5.96it/s]61it [00:19, 6.21it/s]62it [00:19, 6.48it/s]63it [00:19, 6.56it/s]64it [00:19, 6.41it/s]65it [00:19, 6.23it/s]66it [00:19, 6.76it/s]67it [00:19, 7.07it/s]68it [00:20, 6.90it/s]69it [00:20, 6.84it/s]70it [00:20, 6.85it/s]71it [00:20, 6.56it/s]72it [00:20, 6.73it/s]2021-10-13 02:03:34 - INFO - train - 75 : Epoch : 3, train_step : 288/470, loss_value : 0.0027423129973208737
73it [00:20, 6.50it/s]74it [00:20, 6.73it/s]75it [00:21, 7.17it/s]76it [00:21, 7.24it/s]77it [00:21, 7.14it/s]78it [00:21, 7.19it/s]79it [00:21, 7.19it/s]80it [00:21, 7.16it/s]81it [00:21, 7.02it/s]82it [00:22, 6.83it/s]83it [00:22, 7.15it/s]84it [00:22, 6.98it/s]85it [00:22, 6.89it/s]86it [00:22, 6.89it/s]87it [00:22, 6.57it/s]88it [00:23, 6.42it/s]89it [00:23, 6.45it/s]90it [00:23, 6.47it/s]2021-10-13 02:03:36 - INFO - train - 75 : Epoch : 3, train_step : 360/470, loss_value : 0.002438854129043951
91it [00:23, 6.54it/s]92it [00:23, 6.91it/s]93it [00:23, 7.10it/s]94it [00:23, 7.21it/s]94it [00:23, 3.94it/s]
0it [00:00, ?it/s]2021-10-13 02:03:37 - INFO - __call__ - 72 : EmbeddingSimilarityEvaluator: Evaluating the model on dataset in epoch 4 after 1 steps:
Batches: 0%| | 0/138 [00:00<?, ?it/s][A
Batches: 2%|▏ | 3/138 [00:00<00:05, 23.81it/s][A
Batches: 4%|▍ | 6/138 [00:00<00:05, 22.97it/s][A
Batches: 7%|▋ | 10/138 [00:00<00:04, 25.68it/s][A
Batches: 12%|█▏ | 16/138 [00:00<00:04, 30.39it/s][A
Batches: 16%|█▌ | 22/138 [00:00<00:03, 35.08it/s][A
Batches: 20%|██ | 28/138 [00:00<00:02, 39.50it/s][A
Batches: 25%|██▍ | 34/138 [00:00<00:02, 43.36it/s][A
Batches: 29%|██▉ | 40/138 [00:00<00:02, 47.02it/s][A
Batches: 33%|███▎ | 46/138 [00:01<00:01, 50.25it/s][A
Batches: 38%|███▊ | 53/138 [00:01<00:01, 52.86it/s][A
Batches: 43%|████▎ | 60/138 [00:01<00:01, 54.90it/s][A
Batches: 49%|████▊ | 67/138 [00:01<00:01, 56.53it/s][A
Batches: 54%|█████▎ | 74/138 [00:01<00:01, 57.52it/s][A
Batches: 59%|█████▊ | 81/138 [00:01<00:00, 58.73it/s][A
Batches: 64%|██████▍ | 88/138 [00:01<00:00, 59.69it/s][A
Batches: 69%|██████▉ | 95/138 [00:01<00:00, 60.40it/s][A
Batches: 74%|███████▍ | 102/138 [00:01<00:00, 61.27it/s][A
Batches: 79%|███████▉ | 109/138 [00:02<00:00, 62.06it/s][A
Batches: 84%|████████▍ | 116/138 [00:02<00:00, 62.59it/s][A
Batches: 89%|████████▉ | 123/138 [00:02<00:00, 63.19it/s][A
Batches: 94%|█████████▍| 130/138 [00:02<00:00, 64.00it/s][A
Batches: 99%|█████████▉| 137/138 [00:02<00:00, 65.56it/s][ABatches: 100%|██████████| 138/138 [00:02<00:00, 55.68it/s]
Batches: 0%| | 0/138 [00:00<?, ?it/s][A
Batches: 4%|▎ | 5/138 [00:00<00:03, 42.45it/s][A
Batches: 7%|▋ | 10/138 [00:00<00:02, 44.24it/s][A
Batches: 12%|█▏ | 16/138 [00:00<00:02, 46.23it/s][A
Batches: 16%|█▌ | 22/138 [00:00<00:02, 47.44it/s][A
Batches: 20%|██ | 28/138 [00:00<00:02, 48.66it/s][A
Batches: 25%|██▍ | 34/138 [00:00<00:02, 49.46it/s][A
Batches: 29%|██▉ | 40/138 [00:00<00:01, 51.55it/s][A
Batches: 33%|███▎ | 46/138 [00:00<00:01, 52.73it/s][A
Batches: 38%|███▊ | 52/138 [00:01<00:01, 53.79it/s][A
Batches: 42%|████▏ | 58/138 [00:01<00:01, 54.60it/s][A
Batches: 46%|████▋ | 64/138 [00:01<00:01, 55.44it/s][A
Batches: 51%|█████ | 70/138 [00:01<00:01, 52.98it/s][A
Batches: 55%|█████▌ | 76/138 [00:01<00:01, 53.77it/s][A
Batches: 59%|█████▉ | 82/138 [00:01<00:01, 54.56it/s][A
Batches: 64%|██████▍ | 88/138 [00:01<00:00, 55.68it/s][A
Batches: 68%|██████▊ | 94/138 [00:01<00:00, 56.55it/s][A
Batches: 72%|███████▏ | 100/138 [00:01<00:00, 56.47it/s][A
Batches: 77%|███████▋ | 106/138 [00:01<00:00, 56.99it/s][A
Batches: 81%|████████ | 112/138 [00:02<00:00, 56.80it/s][A
Batches: 86%|████████▌ | 118/138 [00:02<00:00, 56.51it/s][A
Batches: 90%|████████▉ | 124/138 [00:02<00:00, 54.46it/s][A
Batches: 94%|█████████▍| 130/138 [00:02<00:00, 51.98it/s][A
Batches: 99%|█████████▊| 136/138 [00:02<00:00, 51.66it/s][ABatches: 100%|██████████| 138/138 [00:02<00:00, 53.44it/s]
2021-10-13 02:03:42 - INFO - __call__ - 103 : Cosine-Similarity : Pearson: 0.5050 Spearman: 0.5338
2021-10-13 02:03:42 - INFO - __call__ - 105 : Manhattan-Distance: Pearson: 0.5664 Spearman: 0.5815
2021-10-13 02:03:42 - INFO - __call__ - 107 : Euclidean-Distance: Pearson: 0.5649 Spearman: 0.5798
2021-10-13 02:03:42 - INFO - __call__ - 109 : Dot-Product-Similarity: Pearson: 0.3229 Spearman: 0.3065
2021-10-13 02:03:42 - INFO - train - 102 : No improvement over previous best eval score (0.533791 vs 0.599323), patience = 13
1it [00:05, 5.52s/it]2it [00:05, 3.92s/it]3it [00:05, 2.79s/it]4it [00:06, 2.00s/it]5it [00:06, 1.45s/it]6it [00:06, 1.06s/it]7it [00:06, 1.27it/s]8it [00:06, 1.66it/s]9it [00:06, 2.14it/s]10it [00:06, 2.69it/s]11it [00:07, 3.38it/s]12it [00:07, 3.95it/s]13it [00:07, 4.57it/s]14it [00:07, 4.94it/s]15it [00:07, 5.31it/s]16it [00:07, 5.79it/s]17it [00:07, 6.27it/s]18it [00:08, 6.37it/s]2021-10-13 02:03:45 - INFO - train - 75 : Epoch : 4, train_step : 90/470, loss_value : 0.0010884119348904481
19it [00:08, 6.47it/s]20it [00:08, 6.60it/s]21it [00:08, 6.95it/s]22it [00:08, 6.99it/s]23it [00:08, 6.61it/s]24it [00:08, 6.58it/s]25it [00:09, 6.68it/s]26it [00:09, 6.47it/s]27it [00:09, 6.27it/s]28it [00:09, 6.19it/s]29it [00:09, 6.42it/s]30it [00:09, 6.44it/s]31it [00:10, 6.23it/s]32it [00:10, 6.49it/s]33it [00:10, 6.32it/s]34it [00:10, 6.95it/s]35it [00:10, 6.62it/s]36it [00:10, 6.56it/s]2021-10-13 02:03:48 - INFO - train - 75 : Epoch : 4, train_step : 180/470, loss_value : 0.0008072416159039778
37it [00:10, 6.54it/s]38it [00:11, 6.39it/s]39it [00:11, 6.57it/s]40it [00:11, 6.72it/s]41it [00:11, 6.60it/s]42it [00:11, 6.94it/s]43it [00:11, 6.61it/s]44it [00:12, 6.69it/s]45it [00:12, 6.61it/s]46it [00:12, 6.35it/s]47it [00:12, 6.28it/s]2021-10-13 02:03:49 - INFO - __call__ - 72 : EmbeddingSimilarityEvaluator: Evaluating the model on dataset in epoch 4 after 48 steps:
Batches: 0%| | 0/138 [00:00<?, ?it/s][A
Batches: 4%|▎ | 5/138 [00:00<00:02, 44.44it/s][A
Batches: 8%|▊ | 11/138 [00:00<00:02, 45.91it/s][A
Batches: 12%|█▏ | 17/138 [00:00<00:02, 47.52it/s][A
Batches: 17%|█▋ | 23/138 [00:00<00:02, 49.15it/s][A
Batches: 21%|██ | 29/138 [00:00<00:02, 50.64it/s][A
Batches: 25%|██▌ | 35/138 [00:00<00:01, 52.16it/s][A
Batches: 30%|██▉ | 41/138 [00:00<00:01, 53.54it/s][A
Batches: 34%|███▍ | 47/138 [00:00<00:01, 54.80it/s][A
Batches: 38%|███▊ | 53/138 [00:00<00:01, 55.73it/s][A
Batches: 43%|████▎ | 59/138 [00:01<00:01, 56.54it/s][A
Batches: 47%|████▋ | 65/138 [00:01<00:01, 56.65it/s][A
Batches: 52%|█████▏ | 72/138 [00:01<00:01, 57.67it/s][A
Batches: 57%|█████▋ | 79/138 [00:01<00:01, 58.54it/s][A
Batches: 62%|██████▏ | 85/138 [00:01<00:00, 58.75it/s][A
Batches: 66%|██████▌ | 91/138 [00:01<00:00, 59.06it/s][A
Batches: 71%|███████ | 98/138 [00:01<00:00, 59.56it/s][A
Batches: 76%|███████▌ | 105/138 [00:01<00:00, 60.29it/s][A
Batches: 81%|████████ | 112/138 [00:01<00:00, 61.07it/s][A
Batches: 86%|████████▌ | 119/138 [00:02<00:00, 60.77it/s][A
Batches: 91%|█████████▏| 126/138 [00:02<00:00, 58.80it/s][A
Batches: 96%|█████████▌| 132/138 [00:02<00:00, 56.65it/s][ABatches: 100%|██████████| 138/138 [00:02<00:00, 56.80it/s]
Batches: 0%| | 0/138 [00:00<?, ?it/s][A
Batches: 2%|▏ | 3/138 [00:00<00:04, 29.97it/s][A
Batches: 6%|▌ | 8/138 [00:00<00:03, 33.28it/s][A
Batches: 9%|▉ | 13/138 [00:00<00:03, 36.59it/s][A
Batches: 13%|█▎ | 18/138 [00:00<00:03, 39.70it/s][A
Batches: 17%|█▋ | 24/138 [00:00<00:02, 42.54it/s][A
Batches: 22%|██▏ | 30/138 [00:00<00:02, 45.12it/s][A
Batches: 26%|██▌ | 36/138 [00:00<00:02, 47.27it/s][A
Batches: 30%|███ | 42/138 [00:00<00:01, 49.39it/s][A
Batches: 35%|███▍ | 48/138 [00:00<00:01, 50.77it/s][A
Batches: 39%|███▉ | 54/138 [00:01<00:01, 52.40it/s][A
Batches: 43%|████▎ | 60/138 [00:01<00:01, 52.76it/s][A
Batches: 48%|████▊ | 66/138 [00:01<00:01, 52.85it/s][A
Batches: 52%|█████▏ | 72/138 [00:01<00:01, 53.20it/s][A
Batches: 57%|█████▋ | 78/138 [00:01<00:01, 52.92it/s][A
Batches: 61%|██████ | 84/138 [00:01<00:01, 52.92it/s][A
Batches: 65%|██████▌ | 90/138 [00:01<00:00, 53.04it/s][A
Batches: 70%|██████▉ | 96/138 [00:01<00:00, 54.40it/s][A
Batches: 74%|███████▍ | 102/138 [00:01<00:00, 55.46it/s][A
Batches: 78%|███████▊ | 108/138 [00:02<00:00, 55.88it/s][A
Batches: 83%|████████▎ | 114/138 [00:02<00:00, 56.24it/s][A
Batches: 87%|████████▋ | 120/138 [00:02<00:00, 56.68it/s][A
Batches: 91%|█████████▏| 126/138 [00:02<00:00, 57.62it/s][A
Batches: 96%|█████████▋| 133/138 [00:02<00:00, 58.46it/s][ABatches: 100%|██████████| 138/138 [00:02<00:00, 53.55it/s]
2021-10-13 02:03:55 - INFO - __call__ - 103 : Cosine-Similarity : Pearson: 0.5045 Spearman: 0.5325
2021-10-13 02:03:55 - INFO - __call__ - 105 : Manhattan-Distance: Pearson: 0.5655 Spearman: 0.5803
2021-10-13 02:03:55 - INFO - __call__ - 107 : Euclidean-Distance: Pearson: 0.5641 Spearman: 0.5787
2021-10-13 02:03:55 - INFO - __call__ - 109 : Dot-Product-Similarity: Pearson: 0.3226 Spearman: 0.3060
2021-10-13 02:03:55 - INFO - train - 102 : No improvement over previous best eval score (0.532455 vs 0.599323), patience = 12
48it [00:17, 1.72s/it]49it [00:18, 1.25s/it]50it [00:18, 1.09it/s]51it [00:18, 1.47it/s]52it [00:18, 1.92it/s]53it [00:18, 2.47it/s]54it [00:18, 3.07it/s]2021-10-13 02:03:56 - INFO - train - 75 : Epoch : 4, train_step : 270/470, loss_value : 0.001684180268461609
55it [00:18, 3.63it/s]56it [00:19, 4.17it/s]57it [00:19, 4.84it/s]58it [00:19, 5.24it/s]59it [00:19, 5.55it/s]60it [00:19, 5.98it/s]61it [00:19, 5.96it/s]62it [00:19, 5.98it/s]63it [00:20, 6.23it/s]64it [00:20, 6.52it/s]65it [00:20, 6.72it/s]66it [00:20, 6.66it/s]67it [00:20, 6.85it/s]68it [00:20, 6.79it/s]69it [00:20, 6.99it/s]70it [00:21, 6.96it/s]71it [00:21, 6.85it/s]72it [00:21, 6.53it/s]2021-10-13 02:03:58 - INFO - train - 75 : Epoch : 4, train_step : 360/470, loss_value : 0.0014376413285693463
73it [00:21, 6.35it/s]74it [00:21, 6.21it/s]75it [00:21, 6.51it/s]76it [00:22, 6.71it/s]77it [00:22, 6.89it/s]78it [00:22, 6.77it/s]79it [00:22, 6.62it/s]80it [00:22, 6.60it/s]81it [00:22, 6.55it/s]82it [00:22, 6.73it/s]83it [00:23, 6.71it/s]84it [00:23, 6.91it/s]85it [00:23, 6.76it/s]86it [00:23, 6.71it/s]87it [00:23, 6.54it/s]88it [00:23, 6.71it/s]89it [00:23, 6.68it/s]90it [00:24, 6.68it/s]2021-10-13 02:04:01 - INFO - train - 75 : Epoch : 4, train_step : 450/470, loss_value : 0.0008760410839588278
91it [00:24, 6.92it/s]92it [00:24, 6.44it/s]93it [00:24, 6.49it/s]94it [00:24, 6.94it/s]94it [00:24, 3.81it/s]
Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex.
238766
['喜欢打篮球的男生喜欢什么样的女生', '我手机丢了,我想换个手机']
12000
['喜欢打篮球的男生喜欢什么样的女生', '我手机丢了,我想换个手机']
<InputExample> label: 1, text pairs : 喜欢打篮球的男生喜欢什么样的女生; 喜欢打篮球的男生喜欢什么样的女生
['开初婚未育证明怎么弄?', '初婚未育情况证明怎么开?'] 1
开初婚未育证明怎么弄? 初婚未育情况证明怎么开? 1
谁知道她是网络美女吗? 爱情这杯酒谁喝都会醉是什么歌 0
人和畜生的区别是什么? 人与畜生的区别是什么! 1
男孩喝女孩的尿的故事 怎样才知道是生男孩还是女孩 0
这种图片是用什么软件制作的? 这种图片制作是用什么软件呢? 1