-
Notifications
You must be signed in to change notification settings - Fork 0
/
Min.lua
66 lines (59 loc) · 1.86 KB
/
Min.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
local Min, parent = torch.class('nn.Min', 'nn.Module')
function Min:__init(dimension, nInputDims)
parent.__init(self)
dimension = dimension or 1
self.dimension = dimension
-- do not assign default value to nInputDims or it will break backward compatibility
self.nInputDims = nInputDims
end
function Min:_getPositiveDimension(input)
local dimension = self.dimension
if dimension < 0 then
dimension = input:dim() + dimension + 1
elseif self.nInputDims and input:dim()==(self.nInputDims+1) then
dimension = dimension + 1
end
return dimension
end
function Min:_lazyInit()
self._output = self._output or self.output.new()
if not self._indices then
if torch.type(self.output) == 'torch.CudaTensor' then
self._indices = torch.CudaLongTensor and torch.CudaLongTensor() or torch.CudaTensor()
else
self._indices = torch.LongTensor()
end
end
end
function Min:updateOutput(input)
self:_lazyInit()
local dimension = self:_getPositiveDimension(input)
torch.min(self._output, self._indices, input, dimension)
if input:dim() > 1 then
self.output:set(self._output:select(dimension, 1))
else
self.output:set(self._output)
end
return self.output
end
function Min:updateGradInput(input, gradOutput)
self:_lazyInit()
local dimension = self:_getPositiveDimension(input)
local gradOutputView
if input:dim() > 1 then
gradOutputView = nn.utils.addSingletonDimension(gradOutput, dimension)
else
gradOutputView = gradOutput
end
self.gradInput:resizeAs(input):zero():scatter(dimension, self._indices, gradOutputView)
return self.gradInput
end
function Min:type(type, tensorCache)
self._indices = nil
parent.type(self, type, tensorCache)
return self
end
function Min:clearState()
nn.utils.clear(self, '_indices', '_output')
return parent.clearState(self)
end