generated from VectorInstitute/aieng-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrid_search_distributed.py
543 lines (439 loc) · 21.5 KB
/
grid_search_distributed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
import argparse
import itertools
import json
import os
import random
from typing import Optional, Tuple, Union
import numpy as np
import torch
from sklearn.metrics import accuracy_score, f1_score
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from torch.utils.data import Dataset, DataLoader
from tqdm import tqdm
from transformers import AdamW, get_linear_schedule_with_warmup
from transformers import GPT2Tokenizer, AutoTokenizer, GPTJConfig, GPTJForSequenceClassification, GPT2Config, GPT2ForSequenceClassification
from transformers import logging
from transformers.modeling_outputs import SequenceClassifierOutputWithPast
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
logger = logging.get_logger(__name__)
def load_label(dataset):
data_path = os.path.join("config/tasks", "{}.json".format(dataset))
with open(data_path, "r") as f:
for line in f:
dp = json.loads(line)
label = dp["options"]
label_list = {k: v for v, k in enumerate(label)}
return label_list
class ICLData(Dataset):
def __init__(self, data_path):
self.texts = []
self.labels = []
with open(data_path, "r") as f:
for line in f:
dp = json.loads(line)
self.texts.append(dp["input"])
self.labels.append(dp["output"])
def __len__(self):
return len(self.texts)
def __getitem__(self, item):
return {'text': self.texts[item], 'label': self.labels[item]}
class Gpt2ClassificationCollator(object):
def __init__(self, tokenizer, labels_encoder, max_sequence_len=None):
self.tokenizer = tokenizer
self.max_sequence_len = self.tokenizer.model_max_length if max_sequence_len is None else max_sequence_len
self.labels_encoder = labels_encoder
def __call__(self, sequences):
texts = [sequence['text'] for sequence in sequences]
labels = [sequence['label'] for sequence in sequences]
labels = [self.labels_encoder[label] for label in labels]
inputs = self.tokenizer(text=texts, return_tensors="pt", padding=True, truncation=True, max_length=self.max_sequence_len)
inputs.update({'labels': torch.tensor(labels)})
return inputs
def train(args, model, dataloader, optimizer, scheduler, device, max_grad_norm=1.0):
model.train()
true_labels = []
predictions_labels = []
total_loss = 0
# scaler = torch.cuda.amp.GradScaler(enabled=True)
for i, batch in enumerate(dataloader):
true_labels += batch['labels'].numpy().flatten().tolist()
batch = {k: v.type(torch.long).to(device) for k, v in batch.items()}
with torch.cuda.amp.autocast(enabled=True):
outputs = model(**batch)
loss, logits = outputs[:2]
total_loss += loss.item()
loss = loss / args.gradient_accumulation_steps
# scaler.scale(loss).backward()
loss.backward()
if (i+1) % args.gradient_accumulation_steps == 0:
# scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm)
optimizer.step()
# scaler.step(optimizer)
scheduler.step()
# scaler.update()
optimizer.zero_grad()
logits = logits.detach().cpu().numpy()
predictions_labels += logits.argmax(axis=-1).flatten().tolist()
avg_epoch_loss = total_loss / len(dataloader)
return true_labels, predictions_labels, avg_epoch_loss
def test(model, dataloader, device):
model.eval()
true_labels = []
predictions_labels = []
total_loss = 0
for batch in dataloader:
true_labels += batch['labels'].numpy().flatten().tolist()
batch = {k: v.type(torch.long).to(device) for k, v in batch.items()}
# batch = {k: v.type(torch.long).to("cuda:3") for k, v in batch.items()}
with torch.no_grad():
outputs = model(**batch)
loss, logits = outputs[:2]
logits = logits.detach().cpu().numpy()
total_loss += loss.item()
predict_content = logits.argmax(axis=-1).flatten().tolist()
predictions_labels += predict_content
avg_epoch_loss = total_loss / len(dataloader)
return true_labels, predictions_labels, avg_epoch_loss
def save(args, model, seed):
# check if path exist
path = os.path.join(args.out_dir, args.gpt2, args.dataset)
is_exit = os.path.exists(path)
if is_exit:
torch.save(model.state_dict(), os.path.join(path, 'model_{}_{}_correct_{}.pt'.format(args.dataset, args.correct, seed)))
else:
os.makedirs(path)
torch.save(model.state_dict(), os.path.join(path, 'model_{}_{}_correct_{}.pt'.format(args.dataset, args.correct, seed)))
def grid_para(para_list):
all_combinations = list(itertools.product(*para_list))
all_paras = []
paras_names = ['steps', 'lr', 'bs']
for i, item in enumerate(all_combinations):
paras = dict(zip(paras_names, item))
all_paras.append(paras)
return all_paras
class GPTJClassificationParallel(GPTJForSequenceClassification):
def __int__(self, config):
super().__init__(config)
self.model_parallel = False
self.device_map = None
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
if self.model_parallel:
torch.cuda.set_device(self.transformer.first_device)
hidden_states = hidden_states.to(self.score.weight.device)
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1
else:
sequence_lengths = -1
logger.warning(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def parallelize(self, device_map=None):
# Check validity of device_map
self.device_map = (
get_device_map(len(self.transformer.h), range(torch.cuda.device_count())) if device_map is None else device_map
)
assert_device_map(self.device_map, len(self.transformer.h))
self.transformer.parallelize(self.device_map)
self.score = self.score.to(self.transformer.first_device)
self.model_parallel = True
def deparallelize(self):
self.transformer.deparallelize()
self.transformer = self.transformer.to("cpu")
self.score = self.score.to("cpu")
self.model_parallel = False
torch.cuda.empty_cache()
class GPT2ClassificationParallel(GPT2ForSequenceClassification):
def __int__(self, config):
super().__init__(config)
self.model_parallel = False
self.device_map = None
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
if self.model_parallel:
torch.cuda.set_device(self.transformer.first_device)
hidden_states = hidden_states.to(self.score.weight.device)
logits = self.score(hidden_states)
if input_ids is not None:
batch_size, sequence_length = input_ids.shape[:2]
else:
batch_size, sequence_length = inputs_embeds.shape[:2]
assert (
self.config.pad_token_id is not None or batch_size == 1
), "Cannot handle batch sizes > 1 if no padding token is defined."
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1
else:
sequence_lengths = -1
logger.warning(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def parallelize(self, device_map=None):
# Check validity of device_map
self.device_map = (
get_device_map(len(self.transformer.h), range(torch.cuda.device_count())) if device_map is None else device_map
)
assert_device_map(self.device_map, len(self.transformer.h))
self.transformer.parallelize(self.device_map)
self.score = self.score.to(self.transformer.first_device)
self.model_parallel = True
def deparallelize(self):
self.transformer.deparallelize()
self.transformer = self.transformer.to("cpu")
self.score = self.score.to("cpu")
self.model_parallel = False
torch.cuda.empty_cache()
def hyperparameter_tuning(args, device, train_path, test_path, para_dict, collator, num_label):
model_config = GPTJConfig.from_pretrained("EleutherAI/gpt-j-6B", num_labels=num_label)
model = GPTJClassificationParallel.from_pretrained("EleutherAI/gpt-j-6B", low_cpu_mem_usage=True, config=model_config)
model.model_parallel = True
# model.device_map = {
# 0: [0, 1, 2, 3, 4, 5, 6],
# 1: [7, 8, 9, 10, 11, 12, 13],
# 2: [14, 15, 16, 17, 18, 19, 20],
# 3: [21, 22, 23, 24, 25, 26, 27],
# }
model.device_map = {
0: [0, 1, 2, 3],
1: [4, 5, 6, 7],
2: [8, 9, 10, 11],
3: [12, 13, 14, 15],
4: [16, 17, 18, 19],
5: [20, 21, 22, 23],
6: [24, 25, 26, 27],
}
# gpt2-xl
# model_config = GPT2Config.from_pretrained("gpt2-xl", output_hidden_states=False, num_labels=num_label)
# model = GPT2ClassificationParallel.from_pretrained("gpt2-xl", config=model_config)
# model.model_parallel = True
# model.device_map = {
# 0: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21],
# 1: [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47],
# }
model.config.pad_token_id = model.config.eos_token_id
model.to(device)
model.parallelize(model.device_map)
train_dataset = ICLData(train_path)
train_dataloader = DataLoader(train_dataset, batch_size=para_dict["bs"], shuffle=True, collate_fn=collator)
model.deparallelize()
model.to(device)
model.parallelize(model.device_map)
test_dataset = ICLData(test_path)
test_dataloader = DataLoader(test_dataset, batch_size=para_dict["bs"], shuffle=True, collate_fn=collator)
optimizer = AdamW(model.parameters(), lr=para_dict["lr"], eps=1e-8)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps,
num_training_steps=para_dict["steps"])
for epoch in tqdm(range(para_dict["steps"])):
train_labels, train_predict, train_loss = train(args, model, train_dataloader, optimizer, scheduler, device)
train_acc = accuracy_score(train_labels, train_predict)
print("-Epoch: %.5f - train_loss: %.5f - train_acc: %.5f " % (epoch, train_loss, train_acc))
test_true_labels, predictions_labels, avg_epoch_loss = test(model, test_dataloader, device)
f1 = f1_score(test_true_labels, predictions_labels, average='macro')
return f1, model
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--device', default='cuda', type=str)
parser.add_argument("--seeds", type=list, default=[100,13,21,42,87])
parser.add_argument("--dataset", type=str, default="SST-2")
parser.add_argument("--task_name", type=str, default=None)
parser.add_argument("--k", type=int, default=16)
parser.add_argument("--max_len", type=int, default=1024)
parser.add_argument("--warmup_steps", type=int, default=0)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument("--gpt2", type=str, default="gpt2-large")
parser.add_argument("--out_dir", type=str, default="hyperparameter")
parser.add_argument('--imbalance_level', type=str, default='low',
help="imbalance level of labels, choosing from low, medium, high")
parser.add_argument('--label_imbalance', action='store_true')
args = parser.parse_args()
device = torch.device(args.device if torch.cuda.is_available() else "cpu")
print('Device:{}'.format(device))
if args.gpt2.startswith("gpt2"):
tokenizer = GPT2Tokenizer.from_pretrained(args.gpt2)
else:
tokenizer = AutoTokenizer.from_pretrained("gpt2")
tokenizer.padding_side = "left"
tokenizer.pad_token = tokenizer.eos_token
# random seed
for seed in args.seeds:
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.device_count() > 0:
torch.cuda.manual_seed_all(seed)
label_ids = load_label(args.task_name)
num_label = len(label_ids)
collator = Gpt2ClassificationCollator(tokenizer=tokenizer, labels_encoder=label_ids, max_sequence_len=args.max_len)
if not args.label_imbalance:
train_data_path = os.path.join("data_noisy_label", args.dataset,
"{}_{}_{}_train.jsonl".format(args.dataset, args.k, seed))
test_data_path = os.path.join("data_noisy_label", args.dataset,
"{}_{}_{}_test.jsonl".format(args.dataset, args.k, seed))
else:
train_data_path = os.path.join("data_imbalance", "{}_{}".format(args.dataset, args.imbalance_level), "{}_{}_{}_train.jsonl".format(args.dataset, args.k, seed))
test_data_path = os.path.join("data_imbalance", "{}_{}".format(args.dataset, args.imbalance_level), "{}_{}_{}_test.jsonl".format(args.dataset, args.k, seed))
print("Training example path", train_data_path)
para_list = [[50, 100, 200], [1e-5, 2e-5, 3e-5], [2, 4, 8, 16]]
all_paras = grid_para(para_list)
all_f1s = []
for para in all_paras:
f1, model = hyperparameter_tuning(args, device, train_data_path, test_data_path, para, collator, num_label)
all_f1s.append(f1)
best_f1_index = np.argmax(all_f1s)
print("Dataset {}: finish hyperparameter tuning with {}".format(args.dataset, all_paras[best_f1_index]))
# save hyper-parameter
save_path = os.path.join(args.out_dir, args.gpt2, args.dataset, "{}_{}.json".format(args.dataset, seed))
is_exit = os.path.exists(os.path.join(args.out_dir, args.gpt2, args.dataset))
if is_exit:
with open(save_path, "w") as f:
json.dump(all_paras[best_f1_index], f)
print("Hyper-parameter saved for {}!".format(args.dataset))
else:
os.makedirs(os.path.join(args.out_dir, args.gpt2, args.dataset))
with open(save_path, "w") as f:
json.dump(all_paras[best_f1_index], f)
print("Hyper-parameter saved for {}!".format(args.dataset))
if __name__ == "__main__":
main()