CPSC 340: Machine Learning and Data Mining

Ensemble Methods Spring 2022 (2021W2)

Admin

- Course webpage:
 - <u>https://github.com/UBC-CS/cpsc340-2021w1</u>
- Assignment 2 is out
 - Due Friday of next week. It's long start early
 - Keep an eye on Piazza and/or commits on the site for updates/fixes
- Midterm
 - Thursday Feb 17 (6 7:30 pm)
 - Will be online
 - You can take it from anywhere

Last Time: K-Nearest Neighbours (KNN)

- K-nearest neighbours algorithm for classifying \tilde{x}_i :
 - Find 'k' values of x_i that are most similar to \tilde{x}_i .
 - Use mode of corresponding y_i.
- Lazy learning:
 To "train" you just store X and y.
- Non-parametric:
 - Size of model grows with 'n' (number of examples)
 - Good short article on parametric vs. "non"
 - Nearly-optimal test error with infinite data.
- But high prediction cost and may need large 'n' if 'd' is large.



Defining "Distance" with "Norms"

- A common way to define the "distance" between examples:
 - Take the "norm" of the difference between feature vectors.

$$\begin{aligned} \|\mathbf{x}_{i} - \tilde{\mathbf{x}}_{i}^{*}\|_{2} &= \sqrt{\sum_{j=1}^{2} (x_{ij} - \tilde{\mathbf{x}}_{ij}^{*})^{2}} \\ \text{train} & \text{test} & L_{2} - norm^{''} \\ \text{example} & \text{example} \end{aligned}$$

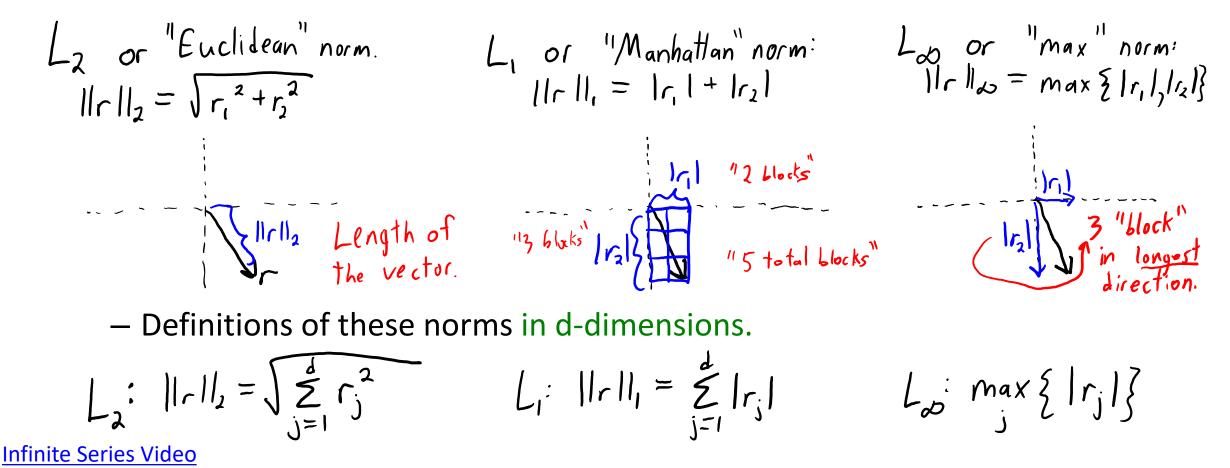
- Norms are a way to measure the "length" of a vector.
 - The most common norm is the "L2-norm" (or "Euclidean norm"):

$$||r||_2 = \sqrt{\frac{2}{2}r_j^2}$$

- Here, the "norm" of the difference is the standard Euclidean distance.

L2-norm, L1-norm, and L∞-Norms.

The three most common norms: L2-norm, L1-norm, and L∞-norm.
 Definitions of these norms with two-dimensions:



Norm and Norm^p Notation (MEMORIZE)

- Notation:
 - We often leave out the "2" for the L2-norm: We use ||r|| for $||r||_2$
 - We use superscripts for raising norms to powers: We use $||r||^2$ for $(||r||)^d$

– You should understand why all of the following quantities are equal:

$$\|r\|^{2} = \|r\|^{2}_{2} = (\|r\|_{2})^{2} = (|z|^{2}r)^{2} = (|z|^{2}r)^{2} = z = z = r^{2}$$

= <rr>
(we'll use

these later)

Norms as Measures of Distance

• By taking norm of difference, we get a "distance" between vectors:

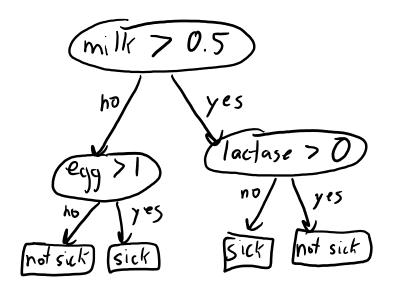
$$\begin{aligned} \|r - s\|_{2} &= \sqrt{(r_{1} - s_{1})^{2} + (r_{2} - s_{2})^{2}} \\ &= \|r - s\| \| \text{ Enclidean distance}^{"} \\ \|r - s\|_{1} &= \|r_{1} - s_{1}\| + \|r_{2} - s_{2}\| \\ \|r - s\|_{1} &= \|r_{1} - s_{1}\| + \|r_{2} - s_{2}\| \\ \|r - s\|_{2} &= \max \left\{ \|r_{1} - s_{1}\|_{2} \|r_{2} - s_{2}\| \right\} \\ \|r - s\|_{2} &= \max \left\{ \|r_{1} - s_{1}\|_{2} \|r_{2} - s_{2}\| \right\} \\ \|r - s\|_{2} &= \max \left\{ \|r_{1} - s_{1}\|_{2} \|r_{2} - s_{2}\| \right\} \\ \|r - s\|_{2} &= \max \left\{ \|r_{1} - s_{1}\|_{2} \|r_{2} - s_{2}\| \right\} \\ \|r - s\|_{2} &= \max \left\{ \|r_{1} - s_{1}\|_{2} \|r_{2} - s_{2}\| \right\} \\ \|r - s\|_{2} &= \max \left\{ \|r_{1} - s_{1}\|_{2} \|r_{2} - s_{2}\| \right\} \\ \|r - s\|_{2} &= \max \left\{ \|r_{1} - s_{1}\|_{2} \|r_{2} - s_{2}\| \right\} \\ \|r - s\|_{2} &= \max \left\{ \|r_{1} - s_{1}\|_{2} \|r_{2} - s_{2}\| \right\} \\ \|r - s\|_{2} &= \max \left\{ \|r_{1} - s_{1}\|_{2} \|r_{2} - s_{2}\| \right\} \\ \|r - s\|_{2} &= \max \left\{ \|r_{1} - s_{1}\|_{2} \|r_{2} - s_{2}\| \right\} \\ \|r - s\|_{2} &= \max \left\{ \|r_{1} - s_{1}\|_{2} \|r_{2} - s_{2}\| \right\} \\ \|r - s\|_{2} &= \max \left\{ \|r_{1} - s_{1}\|_{2} \|r_{2} - s_{2}\| \right\} \\ \|r - s\|_{2} &= \max \left\{ \|r_{1} - s_{1}\|_{2} \|r_{2} - s_{2}\| \right\} \\ \|r - s\|_{2} &= \max \left\{ \|r_{1} - s_{1}\|_{2} \|r_{2} - s_{2}\| \right\} \\ \|r - s\|_{2} &= \max \left\{ \|r_{1} - s_{1}\|_{2} \|r_{2} - s_{2}\| \right\} \\ \|r - s\|_{2} &= \max \left\{ \|r_{1} - s_{1}\|_{2} \|r_{2} - s_{2}\| \right\} \\ \|r - s\|_{2} &= \max \left\{ \|r_{1} - s_{1}\|_{2} \|r_{1} - s_{1}\|_{2} \|r_{2} - s_{2}\| \right\} \\ \|r - s\|_{2} &= \max \left\{ \|r_{1} - s_{1}\|_{2} \|r_{1} - s_{1}\|_{2}$$

- Place different "weights" on large differences: have 'to walk.
 - L_1 : differences are equally notable.
 - L₂: bigger differences are more important (because of squaring).
 - L_{∞} : only biggest difference is important.

KNN Distance Functions

- Most common KNN distance functions: norm $(x_i x_i)$. ullet
 - L1-, L2-, and L∞-norm.
 - 1. "weight" of feature ;; Weighted norms (if some features are more important):
 - "Mahalanobis" distance (takes into account correlations).
 - See bonus slide for what functions define a "norm".
- But we can consider other distance/similarity functions:
 - Jaccard similarity (if x_i are sets).
 - Edit distance (if x_i are strings).
 - Metric learning (*learn* the best distance function).

Decision Trees vs. Naïve Bayes vs. KNN

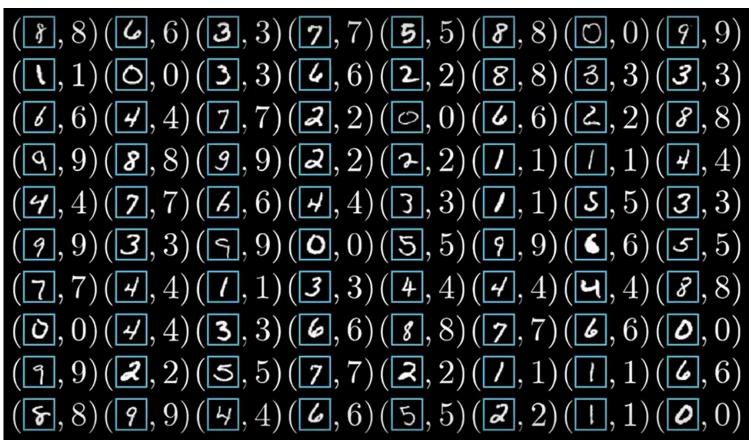


p(sick | milk, egg, lactase) ~ p(milk lsick) plegg lsick) p(lactase lsick) p(sick)

$$(milk = 0.6, egg = 2, lactase = 0, ?)$$
 is close to
 $(milk = 0.7, egg = 2, lactase = 0, sick)$ so predict sick.

Application: Optical Character Recognition

- To scan documents, we want to turn images into characters:
 - "Optical character recognition" (OCR).



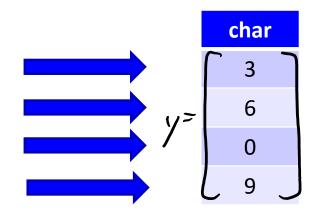
Application: Optical Character Recognition

- To scan documents, we want to turn images into characters:
 - "Optical character recognition" (OCR).

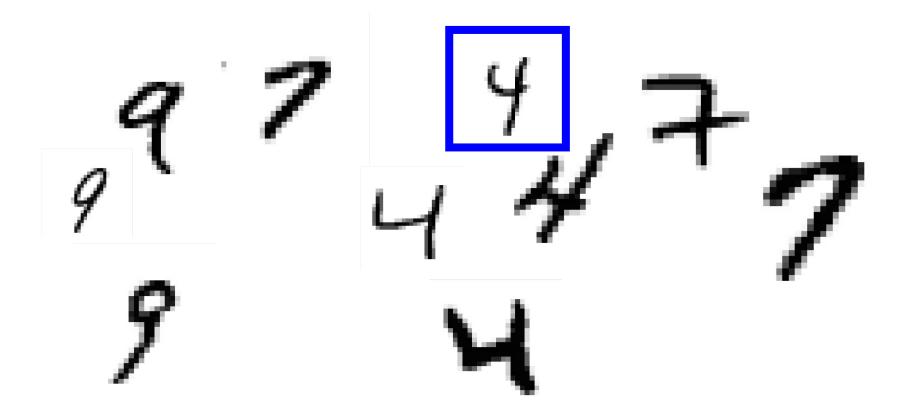


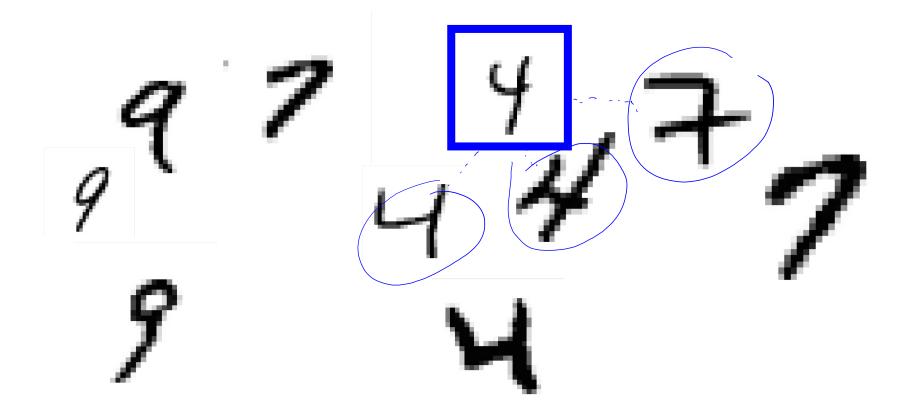
- Turning this into a supervised learning problem (with 28 by 28 images):

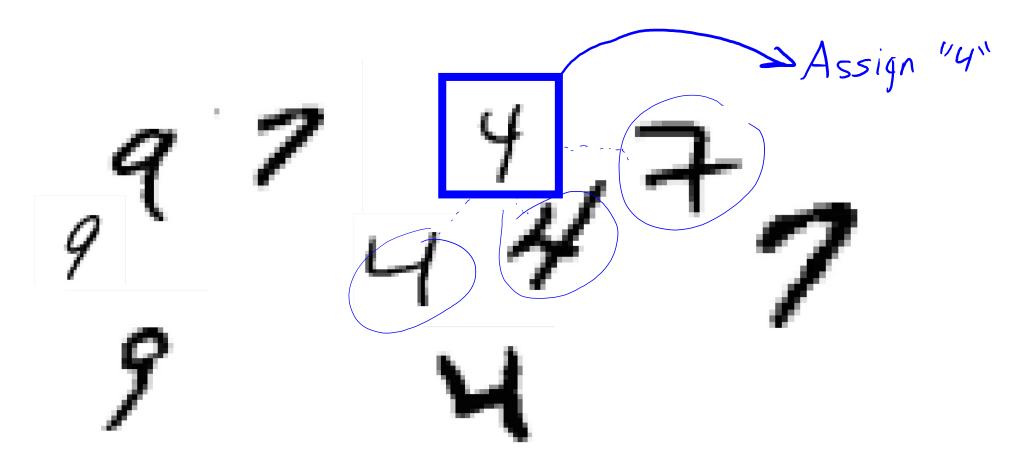
	(1,1)	(2,1)	(3,1)		(28,1)	(1,2)	(2,2)		(14,14)	•••	(28,28)				
	0	0	0		0	0	0		1		0				
Ľ	0	0	0		0	0	0		1		0				
-	0	0	0		0	0	0		0		0				
	- Ó	0	0		0	0	-		1		0				
	Each	Each feature is grayscule intensity of one of the 784 pixels													





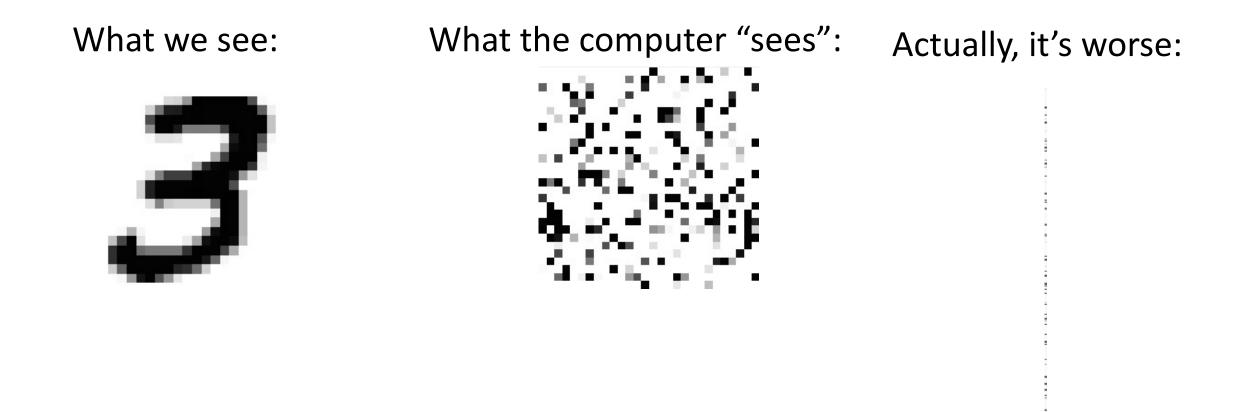






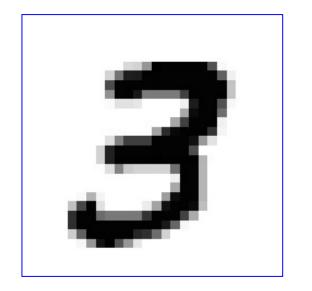
Human vs. Machine Perception

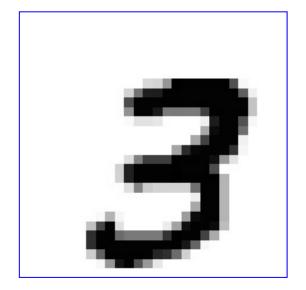
• There is huge difference between what we see and what KNN sees:



What the Computer Sees

• Are these two images "similar"?

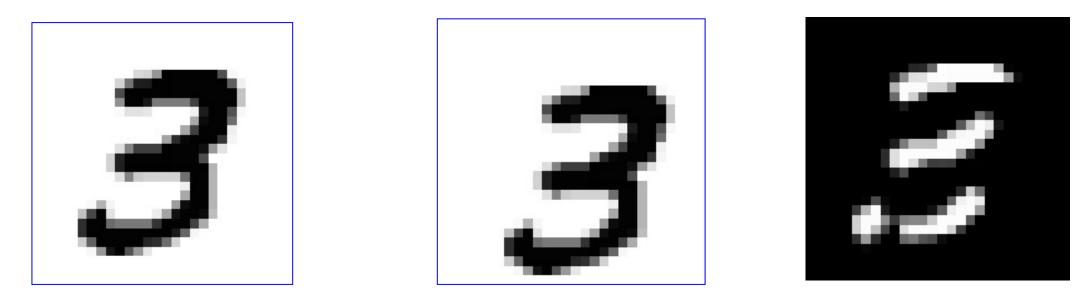




What the Computer Sees

• Are these two images "similar"?

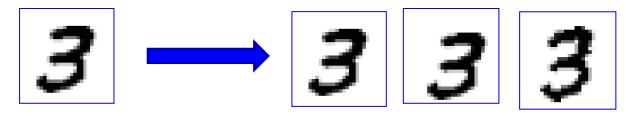
Difference:



• KNN does not know that labels should be translation invariant.

Encouraging Invariance

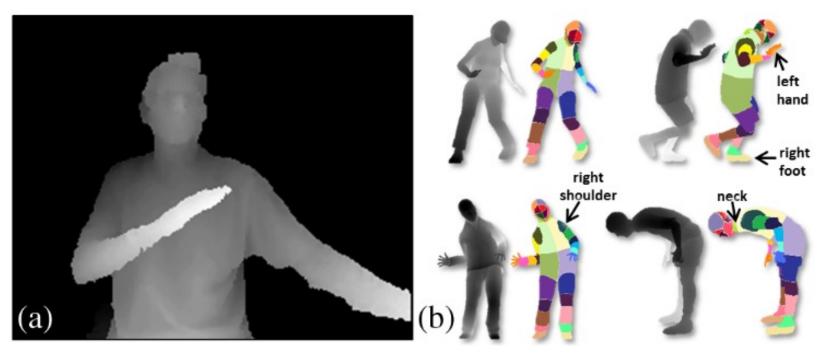
- May want classifier to be invariant to certain feature transforms.
 Images: translations, small rotations, changes in size, mild warping,...
- The hard/slow way is to modify your distance function:
 - Find neighbours that require the "smallest" transformation of image.
- The easy/fast way is to just add transformed data during training:
 - Add translated/rotate/resized/warped versions of training images.



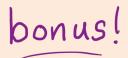
- "Data augmentation": crucial part of many successful vision systems.
- Also really important for sound (translate, change volume, and so on).

Application: Body-Part Recognition

- Microsoft Kinect:
 - Real-time recognition of 31 body parts from laser depth data.

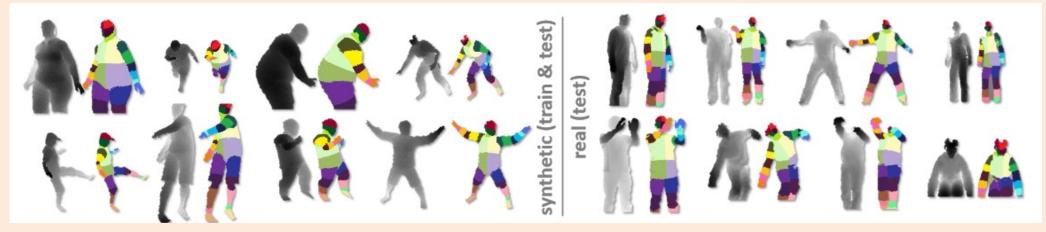


• How could we write a program to do this?



Some Ingredients of Kinect

- 1. Collect hundreds of thousands of labeled images (motion capture).
 - Variety of pose, age, shape, clothing, and crop.
- 2. Build a simulator that fills space of images by making even more images.



- 3. Extract features of each location, that are cheap enough for real-time calculation (depth differences between pixel and pixels nearby.)
- 4. Treat classifying body part of a pixel as a supervised learning problem.
- 5. Run classifier in parallel on all pixels using graphical processing unit (GPU).

Supervised Learning Step

- ALL steps are important, but we'll focus on the learning step.
- Do we have any classifiers that are accurate and run in real time?
 - Decision trees and naïve Bayes are fast, but often not very accurate.
 - KNN is often accurate, but not very fast.

• Deployed system uses an ensemble method called random forests.

Ensemble Methods

- Ensemble methods are classifiers that combine other classifiers.
- They have the best names:
 - Averaging.
 - Blending.
 - Boosting.
 - Bootstrapping.
 - Bagging.
 - Cascading.
 - Random Forests.
 - Stacking.
 - Voting.
- Ensemble methods often have higher accuracy than input classifiers.

Ensemble Method Example: Voting

- Ensemble methods use predictions of a set of models.
 - For example, we could use:
 - Decision trees make one prediction.
 - Naïve Bayes makes another prediction.
 - KNN makes another prediction.
- One of the simplest ensemble methods is voting:
 - Take the mode of the predictions across the classifiers.

Why can Voting Work?

- Consider 3 binary classifiers, each independently correct with probability 0.80:
- With voting, ensemble prediction is correct if we have "at least 2 right":
 - P(all 3 right) = $0.8^3 = 0.512$.
 - $P(2 rights, 1 wrong) = 3*0.8^{2}(1-0.8) = 0.384.$
 - P(1 right, 2 wrongs) = $3^{*}(1-0.8)^{2}0.8 = 0.096$.
 - P(all 3 wrong) = $(1-0.8)^3 = 0.008$.
 - So ensemble is right with probability 0.896 (which is 0.512+0.384).
- Notes:
 - For voting to work, errors of classifiers need to be at least somewhat independent.
 - You also want the probability of being right to be > 0.5, otherwise it can do much worse.
 - Probabilities also shouldn't be too different (otherwise, it might be better to take most accurate).

Why can Voting Work?

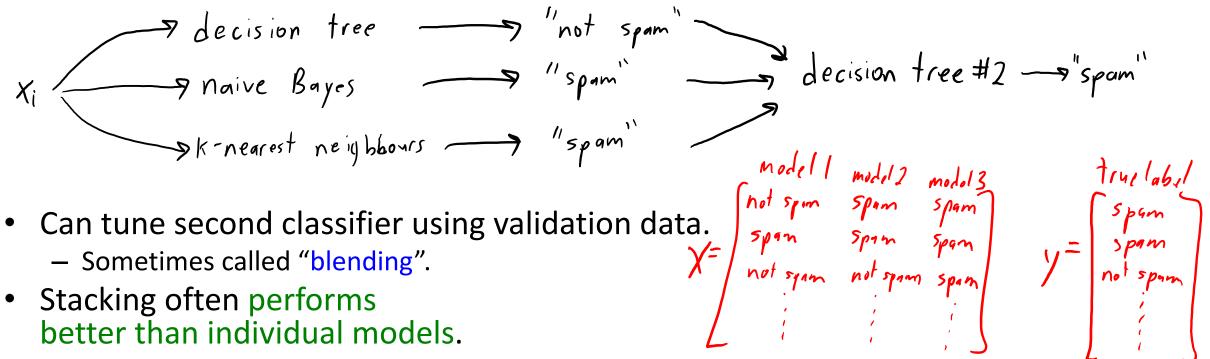
- Why can voting lead to better results?
- Consider classifiers that overfit (like deep decision trees):
 - If they all overfit in exactly the same way, voting does nothing.
- But if they make independent errors:
 - Probability that "vote" is wrong can be lower than for each classifier.
 - Less attention to specific overfitting of each classifier.

Why can Voting Work?

- Consider a set of classifiers that make these predictions:
 - Classifier 1: "spam".
 - Classifier 2: "spam".
 - Classifier 3: "spam".
 - Classifier 4: "not spam".
 - Classifier 5: "spam".
 - Classifier 6: "not spam".
 - Classifier 7: "spam".
 - Classifier 8: "spam".
 - Classifier 9: "spam".
 - Classifier 10: "spam".
- If these independently get 80% accuracy, mode will be close to 100%.
 - In practice errors won't be completely independent (due to noise in labels).

Digression: Stacking

- Another variation on voting is stacking
 - Fit another classifier that uses the predictions as features.



- Typically used by Kaggle winners.
- E.g., Netflix \$1M user-rating competition winner was stacked classifier.

Random Forests

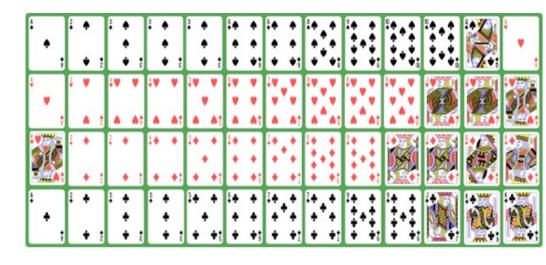
- Random forests take vote from a set of deep decision trees.
 - Tend to be one of the best "out of the box" classifiers.
 - Often close to the best performance of any method on the first run.
 - And predictions are very fast.
- Do deep decision trees make independent errors?
 - No: with the same training data you'll get the same decision tree.
- Two key ingredients in random forests:
 - Bootstrapping.
 - Random trees.

Bootstrap Sampling

- Start with a standard deck of 52 cards:
 - Sample a random card:
 (put it back and re-shuffle)
 - Sample a random card: (put it back and re-shuffle)
 - 3. Sample a random card:(put it back and re-shuffle)
 - 52. Sample a random card: (which may be a repeat)

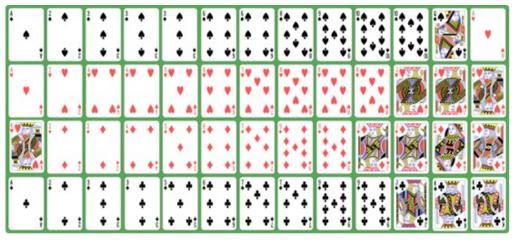
• Makes a new deck of the 52 samples:

A ◆		•	2 ♠	۰ ۲	•	3 ♠	↑ ↑	•	ب : ت	↑ ↓:	54	* *	€ ♠ ₩	↑ ↑	?♠ ♠ ↓	* * *	₿.	* * * * * *	** * * * * * * *	₽ • •	* * * * * *		×
¢	۷	ţ	2 •	•	2	3₩	* *	3	\$ V	¥	5	♥ ♥ ●	₽ ₩	¥ ¥	2♥	•			9 V V V V A V A A		V V V V		
4	•	į	2 •	•	ż	3 •	* * *	•	\$* •	+ +;	5	+ + +	₽ ◆ ◆	* * *	:↓ ↓	** **	₽ • •	8	9				
A ↓	÷	ţ	2 ↓	+ +	ŧ	3 +	+ + +	•	\$ +	+ +;	5 4	+ + + +;	€ + +	+ + +;	₹ + + +	* * * * t	8	*	°+++ +++ +++ +++	₽ + + +	+		



Bootstrap Sampling

 New 52-card deck is called a "bootstrap sample":



- Some cards will be missing, and some cards will be duplicated.
 - So calculations on the bootstrap sample will give different results than original data.
- However, the bootstrap sample roughly maintains trends:
 - Roughly 25% of the cards will be diamonds.
 - Roughly 3/13 of the cards will be "face" cards.
 - There will be roughly four "10" cards.
- Common use: compute a statistic based on several bootstrap samples.
 - Gives you an idea of how the statistic varies as you vary the data.

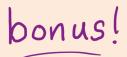
Random Forest Ingredient 1: Bootstrap

- Bootstrap sample of a list of 'n' examples:
 - A new set of size 'n' chosen independently with replacement.

- Gives new dataset of 'n' examples, with some duplicated and some missing.
 - For large 'n', approximately 63% of original examples are included.
- **Bagging**: using bootstrap samples for ensemble learning.
 - Generate several bootstrap samples of the examples (x_i, y_i) .
 - Fit a classifier to each bootstrap sample.
 - At test time, take vote based on the predictions.

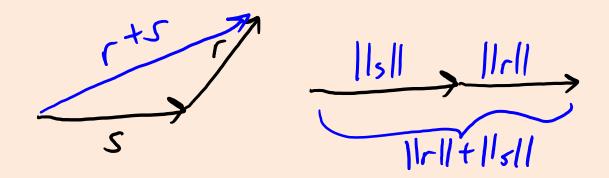
Summary

- Encouraging invariance with data augmentation:
 - Add transformed data to be insensitive to the transformation.
- Ensemble methods take multiplier classifiers as inputs.
- Voting ensemble method:
 - Improves predictions of multiple classifiers if errors are independent.
- Bagging:
 - Ensemble method where we apply same classifier to "bootstrap samples".
- Next time:
 - Unsupervised learning.



3 Defining Properties of Norms

- A "norm" is any function satisfying the following 3 properties:
 - 1. Only '0' has a 'length' of zero.
 - 2. Multiplying 'r' by constant ' α ' multiplies length by $|\alpha|$
 - "If be will twice as long if you multiply by 2": $||\alpha r|| = |\alpha| \cdot ||r||$.
 - Implication is that norms cannot be negative.
 - 3. Length of 'r+s' is not more than length of 'r' plus length of 's':
 - "You can't get there faster by a detour".
 - "Triangle inequality": $||r + s|| \le ||r|| + ||s||$.



Squared/Euclidean-Norm Notation

We're using the following conventions:

The subscript after the norm is used to denote the p-norm, as in these examples:

$$\|x\|_2 = \sqrt{\sum_{j=1}^d w_j^2}.$$

 $\|x\|_1 = \sum_{j=1}^d |w_j|.$

If the subscript is omitted, we mean the 2-norm:

 $||x|| = ||x||_2.$

If we want to talk about the squared value of the norm we use a superscript of "2":

$$egin{aligned} \|x\|_2^2 &= \sum_{j=1}^d w_j^2. \ \|x\|_1^2 &= \left(\sum_{j=1}^d |w_j|
ight)^2 \end{aligned}$$

If we omit the subscript and have a superscript of "2", we're taking about the squared L2-norm:

$$\|x\|^2 = \sum_{j=1}^d w_j^2$$

bonus!

Lp-norms

• The L_1 -, L_2 -, and L_{∞} -norms are special cases of Lp-norms:

$$\|x\|_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{1/p}$$

- This gives a norm for any (real-valued) $p \ge 1$.
 - The L_{∞}-norm is the limit as 'p' goes to ∞ .
- For p < 1, not a norm because triangle inequality not satisfied.

Why does Bootstrapping select approximately 63%?

bonusl

• Probability of an arbitrary x_i being selected in a bootstrap sample:

$$p(\text{selected at least once in 'n' trials}) = 1 - p(\text{not selected in any of 'n' trials}) = 1 - (p(\text{not selected in one trial}))^n (trials are independent) = 1 - (1 - 1/n)^n (prob = \frac{n-1}{n} \text{ for choosing any of the n-1 other sample} \\ \approx 1 - \frac{1}{e} (1 - \frac{1}{n})^n (1 - \frac{1}{n})^n + \frac{1}{e^{-1}} \text{ as } n - \infty)$$



Why Averaging Works

- Consider 'k' independent classifiers, whose errors have a variance of σ^2 .
- If the errors are IID, the variance of the vote is σ^2/k .
 - So the more classifiers that vote, the more you decrease error variance.
 (And the more the training error approximates the test error.)
- Generalization to case where classifiers are not independent is:

$$CO^2 + \frac{(1-c)O^2}{k}$$

- Where 'c' is the correlation.

- So the less correlation you have the closer you get to independent case.
- Randomization in random forests decreases correlation between trees.
 - See also "<u>Sensitivity of Independence Assumptions</u>".

How these concepts often show up in practice

bonusl

- Here is a recent e-mail related to many ideas we've recently covered:
 - "However, the performance did not improve while the model goes deeper and with augmentation. The best result I got on validation set was 80% with LeNet-5 and NO augmentation (LeNet-5 with augmentation I got 79.15%), and later 16 and 50 layer structures both got 70%~75% accuracy.

In addition, there was a software that can use mathematical equations to extract numerical information for me, so I trained the same dataset with nearly 100 features on random forest with 500 trees. The accuracy was 90% on validation set.

I really don't understand that how could deep learning perform worse as the number of hidden layers increases, in addition to that I have changed from VGG to ResNet, which are theoretically trained differently. Moreover, why deep learning algorithm cannot surpass machine learning algorithm?"

• Above there is data augmentation, validation error, effect of the fundamental trade-off, the no free lunch theorem, and the effectiveness of random forests.