CPSC 340: Machine Learning and Data Mining

More Fundamentals + Probabilistic Classification Term2, 2021

Admin

- Assignment 1 is due tonight: you should be almost done.
 - You can use 1 late day to submit Thursday, 2 for Friday.
 - Solutions will go up on Monday.

Last Time: Training, Testing, and Validation

Training step:

• Prediction step:

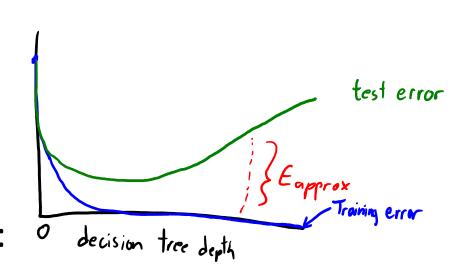
Input: set of 't' testing examples
$$\tilde{x}_i$$
 and a model. Output: predictions \hat{y}_i for the testing examples.

- What we are interested in is the test error:
 - Error made by prediction step on new data.

Last Time: Fundamental Trade-Off

We decomposed test error to get a fundamental trade-off:

- Where $E_{approx} = (E_{test} - E_{train})$.



- Etrain goes down as model gets complicated: O decision tree depth
 - Training error goes down as a decision tree gets deeper.
- But E_{approx} goes up as model gets complicated:
 - Training error becomes a worse approximation of test error.

Last Time: Validation Error

- Golden rule: we can't look at test data during training.
- But we can approximate E_{test} with a validation error:
 - Error on a set of training examples we "hid" during training.

- Find the decision tree based on the "train" rows.
- Validation error is the error of the decision tree on the "validation" rows.
 - We typically choose "hyper-parameters" like depth to minimize the validation error.

Overfitting to the Validation Set?

- Validation error usually has lower optimization bias than training error.
 - Might optimize over 20 values of "depth", instead of millions+ of possible trees.
- But we can still overfit to the validation error (common in practice):
 - Validation error is only an unbiased approximation if you use it once.
 - Once you start optimizing it, you start to overfit to the validation set.
- This is most important when the validation set is "small":
 - The optimization bias decreases as the number of validation examples increases.
- Remember, our goal is still to do well on the test set (new data), not the validation set (where we already know the labels).

• Scenario 1:

- "I built a model based on the data you gave me."
- "It classified your data with 98% accuracy."
- "It should get 98% accuracy on the rest of your data."

Probably not:

- They are reporting training error.
- This might have nothing to do with test error.
- E.g., they could have fit a very deep decision tree.

Why 'probably'?

- If they only tried a few very simple models, the 98% might be reliable.
- E.g., they only considered decision stumps with simple 1-variable rules.

Scenario 2:

- "I built a model based on half of the data you gave me."
- "It classified the other half of the data with 98% accuracy."
- "It should get 98% accuracy on the rest of your data."

Probably:

- They computed the validation error once.
- This is an unbiased approximation of the test error.
- Trust them if you believe they didn't violate the golden rule (THE TEST DATA CANNOT

• Scenario 3:

- "I built 10 models based on half of the data you gave me."
- "One of them classified the other half of the data with 98% accuracy."
- "It should get 98% accuracy on the rest of your data."

Probably:

- They computed the validation error a small number of times.
- Maximizing over these errors is a biased approximation of test error.
- But they only maximized it over 10 models, so bias is probably small.
- They probably know about the golden rule.

• Scenario 4:

- "I built 1 billion models based on half of the data you gave me."
- "One of them classified the other half of the data with 98% accuracy."
- "It should get 98% accuracy on the rest of your data."

Probably not:

- They computed the validation error a huge number of times.
- They tried so many models, one of them is likely to work by chance.

Why 'probably'?

If the 1 billion models were all extremely simple, 98% might be reliable.

• Scenario 5:

- "I built 1 billion models based on the first third of the data you gave me."
- "One of them classified the second third of the data with 98% accuracy."
- "It also classified the last third of the data with 98% accuracy."
- "It should get 98% accuracy on the rest of your data."

Probably:

- They computed the first validation error a huge number of times.
- But they had a second validation set that they only looked at once.
- The second validation set gives unbiased test error approximation.
- This is ideal, as long as they didn't violate golden rule on the last third.
- And assuming you are using IID data in the first place.

Train/Validation/Test Terminology

- Training set: used (a lot) to set parameters.
- Validation set: used (a few times) to set hyper-parameters.
- Testing set: used (once) to evaluate final performance.
- Deployment (real-world): what you really care about.

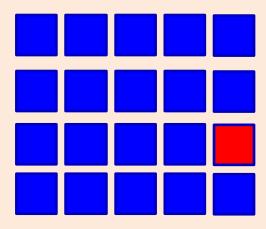
Validation Error and Optimization Bias

- Optimization bias is small if you only compare a few models:
 - Best decision tree on the training set among depths 1, 2, 3,..., 10.
 - Risk of overfitting to validation set is low if we try 10 things.
- Optimization bias is large if you compare a lot of models:
 - All possible decision trees of depth 10 or less.
 - Here we're using the validation set to pick between a billion+ models:
 - Risk of overfitting to validation set is high: could have low validation error by chance.
 - If you did this, you might want a second validation set to detect overfitting.
- And optimization bias shrinks as you grow size of validation set.

bonus!

Aside: Optimization Bias leads to Publication Bias

Suppose that 20 researchers perform the exact same experiment:

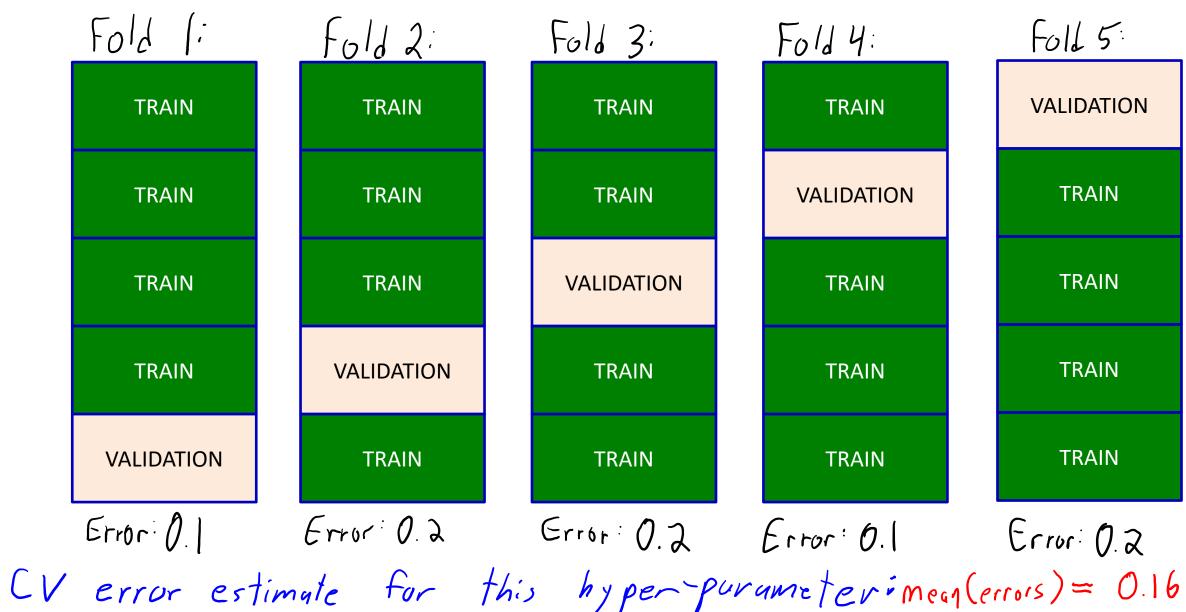


- They each test whether their effect is "significant" (p < 0.05).
 - 19/20 find that it is not significant.
 - But the 1 group finding it's significant publishes a paper about the effect.
- This is again optimization bias, contributing to publication bias.
 - A contributing factor to many reported effects being wrong.

Cross-Validation (CV)

- Isn't it wasteful to only use part of your data?
- 5-fold cross-validation:
 - Train on 80% of the data, validate on the other 20%.
 - Repeat this 5 more times with different splits, and average the score.

Cross-Validation (CV)



Cross-Validation Pseudo-Code

To choose depth for depth in 1:20 compute cross-validations core return depth with highest score To compute 5-fold cross-validation score: for fold in 1:5 train 80% that doesn't include fold test on fold return average test error

Notes:

- This fits 100 models!
 (20 depths times 5 folds)
- We get one (average)
 Score for each of the
 20 depths.
 - Use this score to pick depth

Cross-Validation (CV)

- You can take this idea further ("k-fold cross-validation"):
 - 10-fold cross-validation: train on 90% of data and validate on 10%.
 - Repeat 10 times and average (test on fold 1, then fold 2,..., then fold 10),
 - Leave-one-out cross-validation: train on all but one training example.
 - Repeat n times and average.
- Mean score gets more accurate but more expensive with more folds.
 - To choose depth we compute the cross-validation score for each depth.

- As before, if data is ordered then folds should be random splits.
 - Randomize first, then split into fixed folds.

(pause)

The "Best" Machine Learning Model

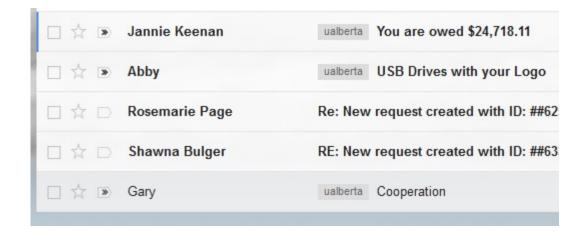
- Decision trees are not always most accurate on test error.
- What is the "best" machine learning model?
- Usual measure of performance is the generalization error:
 - Average error for a random new (x, y) from the (hypothetical) data distribution.
 - "How well we expect to do on a completely fresh test set."
- No free lunch theorem (proof in bonus slides):
 - There is **no** "best" model achieving the best generalization error for every problem.
 - If model A generalizes better to new data than model B on one dataset, there is another dataset where model B works better.
- This question is like asking which is "best" among "rock", "paper", and "scissors."

The "Best" Machine Learning Model

- Implications of the lack of a "best" model:
 - We need to learn about and try out multiple models.
- So which ones to study in CPSC 340?
 - We'll usually motivate each method by a specific application.
 - But we're focusing on models that have been effective in many applications.
- Caveat of no free lunch (NFL) theorem:
 - The world is very structured.
 - But proof of the no-free-lunch theorem assumes any map from x_i to y_i is equally likely.
 - Some datasets are more likely than others.
 - Model A really could be better than model B on every real dataset in practice.
- Machine learning research:
 - Large focus on models that are useful across many applications.

Application: E-mail Spam Filtering

- Want a build a system that detects spam e-mails.
 - Context: spam used to be a big problem.



Can we formulate as supervised learning?

Spam Filtering as Supervised Learning

Collect a large number of e-mails, gets users to label them.

\$	Hi	CPSC	340	Vicodin	Offer		Spam?
1	1	0	0	1	0		1
0	0	0	0	1	1		1
0	1	1	1	0	0		0
					•••		•••

- We can use $(y_i = 1)$ if e-mail 'i' is spam, $(y_i = 0)$ if e-mail is not spam.
- Extract features of each e-mail (like bag of words).
 - $-(x_{ij} = 1)$ if word/phrase 'j' is in e-mail 'i', $(x_{ij} = 0)$ if it is not.



Feature Representation for Spam

- Are there better features than bag of words?
 - We add bigrams (sets of two words):
 - "CPSC 340", "wait list", "special deal".
 - Or trigrams (sets of three words):
 - "Limited time offer", "course registration deadline", "you're a winner".
 - We might include the sender domain:
 - <sender domain == "mail.com">.
 - We might include regular expressions:
 - <your first and last name>.

Review of Supervised Learning Notation

We have been using the notation 'X' and 'y' for supervised learning:

	\$	Hi	CPSC	340	Vicodin	Offer		Spam?	
X=	1	1	0	0	1	0		7 X26 1	
	0	0	0	0	1	1		V- 1	
	0	1	1	1	0	0		1 0 - 7 y3	>
)				•••				•
							_	- X3	

- X is matrix of all features, y is vector of all labels.
 - We use y_i for the label of example 'i' (element 'i' of 'y').
 - We use x_{ij} for feature 'j' of example 'i'.
 - We use x_i as the list of features of example 'i' (row 'i' of 'X').
 - So in the above $x_3 = [0 \ 1 \ 1 \ 1 \ 0 \ 0 \ ...].$
 - In practice, only store list of non-zero features for each x_i (small memory requirement).

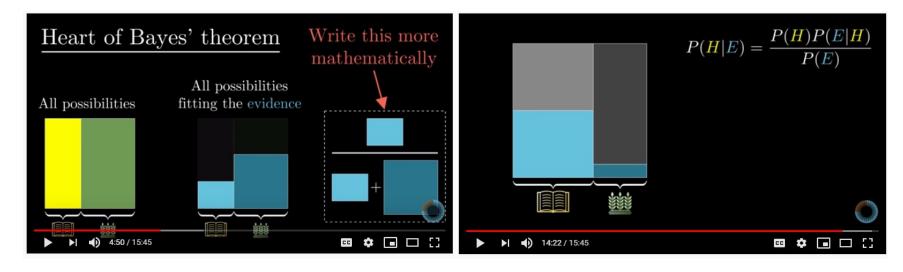
Probabilistic Classifiers

- For years, best spam filtering methods used naïve Bayes.
 - A probabilistic classifier based on Bayes rule.
 - It tends to work well with bag of words.
 - Recently shown to improve on state of the art for CRISPR "gene editing" (<u>link</u>).
- Probabilistic classifiers model the conditional probability, $p(y_i \mid x_i)$.
 - "If a message has words x_i, what is probability that message is spam?"
- Classify it as spam if probability of spam is higher than not spam:
 - If $p(y_i = "spam" | x_i) > p(y_i = "not spam" | x_i)$
 - return "spam".
 - Else
 - return "not spam".

To model conditional probability, naïve Bayes uses Bayes rule:

$$p(y_i = ||span|| ||x_i|) = \frac{p(x_i | y_i = ||span||)}{p(x_i)} p(y_i = ||span||)$$

Nice video giving visual intuition for Bayes rule <u>here</u>:



To model conditional probability, naïve Bayes uses Bayes rule:

$$\rho(y_i = ||span''||x_i) = \frac{\rho(x_i | y_i = ||span''|)\rho(y_i = ||span''|)}{\rho(x_i)}$$

- On the right we have three terms:
 - Marginal probability $p(y_i)$ that an e-mail is spam.
 - Marginal probability $p(x_i)$ that an e-mail has the set of words x_i .
 - Conditional probability $p(x_i | y_i)$ that a spam e-mail has the words x_i .
 - And the same for non-spam e-mails.

$$p(y_i = ||span|| ||x_i|) = \frac{p(x_i | y_i = ||span||)}{p(x_i)} p(y_i = ||span||)$$

What do these terms mean?

ALL E-MAILS

(including duplicates)

$$p(y_i = ||span|| ||x_i||) = \frac{p(x_i ||y_i| = ||span||)}{p(x_i)} p(y_i = ||span||)$$

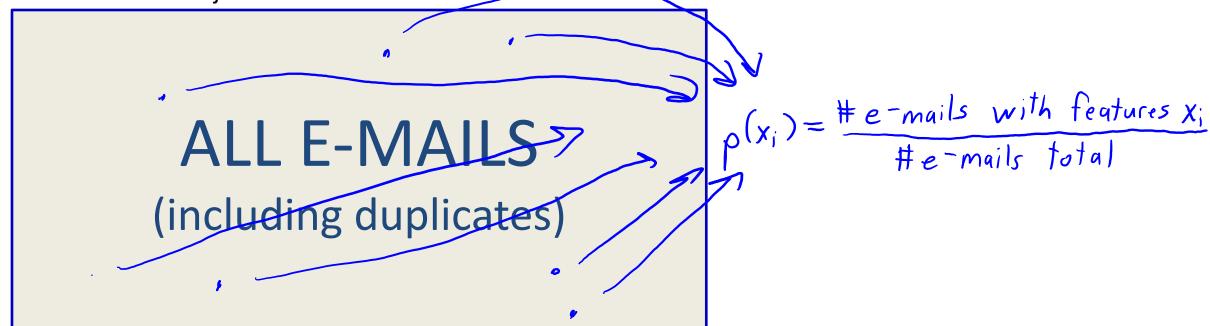
- $p(y_i = "spam")$ is probability that a random e-mail is spam.
 - This is easy to approximate from data: use the proportion in your data.

NOTALL E-SPAIN SPAIN spain duplicates)

This is an "estimate" of the true probability. In particular, this formula is a "maximum likelihood estimate" (MLE). We will cover likelihoods and MLEs later in the course.

$$p(y_i = ||span|| ||x_i|) = \frac{p(x_i | y_i = ||span||)}{p(x_i)} p(y_i = ||span||)$$

- $p(x_i)$ is probability that a random e-mail has features x_i :
 - Hard to approximate: with 'd' words we need to collect 2^d "coupons",
 and that's just to see each word combination once.



$$p(y_i = ||span|| ||x_i||) = \frac{p(x_i ||y_i| = ||span||)}{p(x_i)}$$

- $p(x_i)$ is probability that a random e-mail has features x_i :
 - Hard to approximate: with 'd' words we need to collect 2^d "coupons",
 but it turns out we can ignore it:

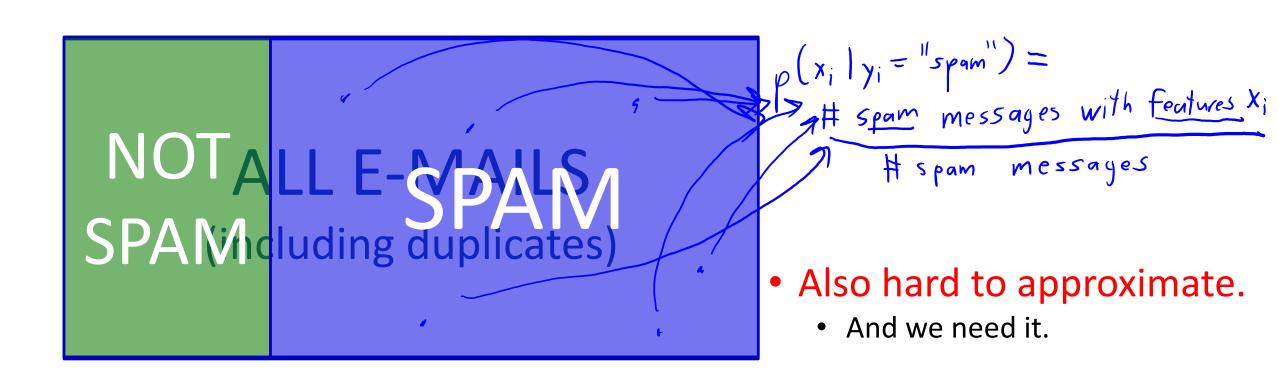
Naive Bayes returns "spam" if
$$p(y_i = \text{"spam"} \mid x_i) > p(y_i = \text{"nt spam"} \mid x_i)$$
.

By Bayes rule this means $p(x_i \mid y_i = \text{"spam"}) p(y_i = \text{"spam"}) > p(x_i \mid y_i = \text{"not span"}) dy_i = \text{"not span"} dy_i =$

$$p(x_i|y_i = "spam")p(y_i = "spam") > p(x_i|y_i = "not span")p(y_i = "not span")$$

$$p(y_i = ||span|| ||x_i|) = \frac{p(x_i | y_i = ||span||)}{p(x_i)} p(y_i = ||span||)$$

• $p(x_i | y_i = "spam")$ is probability that spam has features x_i .



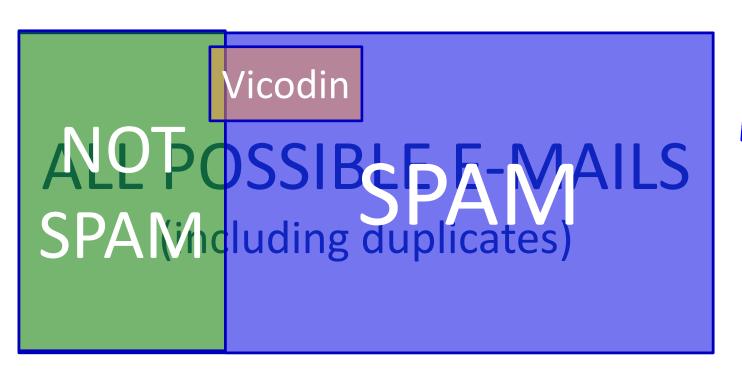
Naïve Bayes

Naïve Bayes makes a big assumption to make things easier:

- We assume all features x_i are conditionally independent give label y_i .
 - Once you know it's spam, probability of "vicodin" doesn't depend on "340".
 - Definitely not true, but sometimes a good approximation.
- And now we only need easy quantities like $p("vicodin" = 0 | y_i = "spam")$.

Naïve Bayes

p("vicodin" = 1 | "spam" = 1) is probability of seeing "vicodin" in spam.

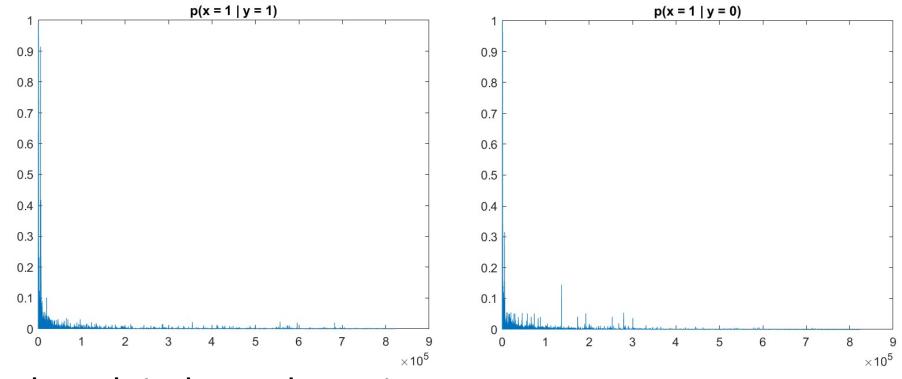


• Easy to estimate:

Again, this is a "maximum likelihood estimate" (MLE). We will cover how to derive this later.

Naïve Bayes

• Comparing $p(x \mid y = c)$ for "spam" and "not spam":



 Even though independence is not true, these values may be enough to distinguish the classes.

Summary

- Optimization bias: using a validation set too much overfits.
- Cross-validation: allows better use of data to estimate test error.
- No free lunch theorem: there is no "best" ML model.
- Probabilistic classifiers: try to estimate $p(y_i \mid x_i)$.
- Naïve Bayes: simple probabilistic classifier based on counting.
 - Uses conditional independence assumptions to make training practical.

- Next time:
 - A "best" machine learning model as 'n' goes to ∞.

Back to Decision Trees

Instead of validation set, you can use CV to select tree depth.

- But you can also use these to decide whether to split:
 - Don't split if validation/CV error doesn't improve.
 - Different parts of the tree will have different depths.
- Or fit deep decision tree and use [cross-]validation to prune:
 - Remove leaf nodes that don't improve CV error.

Popular implementations that have these tricks and others.

Random Subsamples

- Instead of splitting into k-folds, consider "random subsample" method:
 - At each "round", choose a random set of size 'm'.
 - Train on all examples except these 'm' examples.
 - Compute validation error on these 'm' examples.
- Advantages:
 - Still an unbiased estimator of error.
 - Number of "rounds" does not need to be related to "n".
- Disadvantage:
 - Examples that are sampled more often get more "weight".

Cross-Validation Theory

- Does CV give unbiased estimate of test error?
 - Yes!
 - Since each data point is only used once in validation, expected validation error on each data point is test error.
 - But again, if you use CV to select among models then it is no longer unbiased.
- What about variance of CV?
 - Hard to characterize.
 - CV variance on 'n' data points is worse than with a validation set of size 'n'.
 - But we believe it is close.
- Does cross-validation remove optimization bias?
 - No, but the bias might be smaller since you have more "test" points.

Handling Data Sparsity

- Do we need to store the full bag of words 0/1 variables?
 - No: only need list of non-zero features for each e-mail.

\$	Hi	CPSC	340	Vicodin	Offer	
1	1	0	0	1	0	
0	0	0	0	1	1	
0	1	1	1	0	0	
1	1	0	0	0	1	

V	5.
V	

Non-Zeroes			
{1,2,5,}			
{5,6,}			
{2,3,4,}			
{1,2,6,}			

Math/model doesn't change, but more efficient storage.

Generalization Error

- Usual measure of performance is the generalization error:
 - Average error for a random new (x, y) from the (hypothetical) data distribution.
 - "How well we expect to do on a completely fresh test set."
- Test error vs. generalization error when labels are deterministic:

bonus!

"Best" and the "Good" Machine Learning Models

- Question 1: what is the "best" machine learning model?
 - The model that gets lower generalization error than all other models.
- Question 2: which models always do better than random guessing?
 - Models with lower generalization error than "predict 0" for all problems.

No free lunch theorem:

- There is **no** "best" model achieving the best generalization error for every problem.
- If model A generalizes better to new data than model B on one dataset,
 there is another dataset where model B works better.

No Free Lunch Theorem

- Let's show the "no free lunch" theorem in a simple setting:
 - The x^i and y^i are binary, and y^i being a deterministic function of x^i .
- With 'd' features, each "learning problem" is a map from $\{0,1\}^d \rightarrow \{0,1\}$.
 - Assigning a binary label to each of the 2^d feature combinations.

Feature 1	Feature 2	Feature 3
0	0	0
0	0	1
0	1	0

y (map 1)	y (map 2)	y (map 3)	
0	1	0	
0	0	1	
0	0	0	

- Let's pick one of these 'y' vectors ("maps" or "learning problems") and:
 - Generate a set training set of 'n' IID samples.
 - Fit model A (convolutional neural network) and model B (naïve Bayes).



No Free Lunch Theorem

- Define the "unseen" examples as the $(2^d n)$ not seen in training.
 - Assuming no repetitions of x^i values, and $n < 2^d$.
 - Generalization error is the average error on these "unseen" examples.
- Suppose that model A got 1% error and model B got 60% error.
 - We want to show model B beats model A on another "learning problem".
- Among our set of "learning problems" find the one where:
 - The labels yⁱ agree on all training examples.
 - The labels yⁱ disagree on all "unseen" examples.
- On this other "learning problem":
 - Model A gets 99% error and model B gets 40% error.

Proof of No Free Lunch Theorem

- Let's show the "no free lunch" theorem in a simple setting:
 - The x^i and y^i are binary, and y^i being a deterministic function of x^i .
- With 'd' features, each "learning problem" is a map from each of the 2^d feature combinations to 0 or 1: {0,1}^d -> {0,1}

Feature 1	Feature 2	Feature 3
0	0	0
0	0	1
0	1	0

Map 1	Map 2	Map 3	
0	1	0	
0	0	1	•••
0	0	0	

- Let's pick one of these maps ("learning problems") and:
 - Generate a set training set of 'n' IID samples.
 - Fit model A (convolutional neural network) and model B (naïve Bayes).

Proof of No Free Lunch Theorem

- Define the "unseen" examples as the $(2^d n)$ not seen in training.
 - Assuming no repetitions of x^i values, and $n < 2^d$.
 - Generalization error is the average error on these "unseen" examples.
- Suppose that model A got 1% error and model B got 60% error.
 - We want to show model B beats model A on another "learning problem".
- Among our set of "learning problems" find the one where:
 - The labels yⁱ agree on all training examples.
 - The labels y_i disagree on all "unseen" examples.
- On this other "learning problem":
 - Model A gets 99% error and model B gets 40% error.

Proof of No Free Lunch Theorem

- Further, across all "learning problems" with these 'n' examples:
 - Average generalization error of every model is 50% on unseen examples.
 - It's right on each unseen example in exactly half the learning problems.
 - With 'k' classes, the average error is (k-1)/k (random guessing).
- This is kind of depressing:
 - For general problems, no "machine learning" is better than "predict 0".
- But the proof also reveals the problem with the NFL theorem:
 - Assumes every "learning problem" is equally likely.
 - World encourages patterns like "similar features implies similar labels".