CPSC 340: Machine Learning and Data Mining

Convolutional Neural Networks (and miscellaneous deep learning tricks) Spring 2022 (2021W2)

[Admin](https://tinyurl.com/100percentGradeFor340)

- A6 is out. Get it done early!
	- Due April 8th
- Bonus! 100% grade in class for anyone who virtually!
	- Click here to redeem offer within 2 minutes:
		- https://tinyurl.com/100percentGradeFor340

[Admin](https://www.youtube.com/watch?v=AgkfIQ4IGaM)

- Plan for April $6th$ (next wed)
	- An experiment!
- [We will watch two videos from](https://www.youtube.com/watch?v=3lp9eN5JE2A) my research – With live questions!
- Deep Visualization Toolbox: https://www.youtube.com/watch?v=AgkfIQ
- Deep Learning Overview & Visualizing What Learn
- https://www.youtube.com/watch?v=3lp9eN

But first

• A want to briefly revisit two things I flew through

Setting the Step-Size

- Stochastic gradient is very sensitive to the step size in deep models.
- Bias step-size multiplier: use bigger step-size for the bias variables.
- Momentum (stochastic version of "heavy-ball" algorithm):
	- Add term that moves in previous direction:

$$
W^{t+1} = W^{t} - \alpha^{t} \nabla F_{i}(W^{t}) + \beta^{t}(W^{t} - W^{t-1})
$$
\n
$$
W^{t} = \alpha^{t} \nabla F_{i}(W^{t}) + \beta^{t}(W^{t} - W^{t-1})
$$
\n
$$
W^{t} = \alpha^{t} \nabla F_{i}(W^{t}) + \beta^{t}(W^{t} - W^{t-1})
$$
\n
$$
W^{t} = \alpha^{t} \nabla F_{i}(W^{t}) + \beta^{t}(W^{t} - W^{t-1})
$$

 $-$ Usually β^t = 0.9.

Gradient Descent vs. Heavy-

Good demo to check out: https://distill.pub/2017/momentu

Convolutions as Features

Use these

 $\overline{\mathbf{c}}$

96

- Classic vision methods use convolutions as features:
	- Usually have different types/variances/orientations.
	- Can take maxes across locations/orientations/scales.
- Notable convolutions:
	- Gaussian (blurring/averaging).
	- Laplace of Gaussian (second-derivative).
	- Gabor filters

(directional first- or higher-derivative).

Filter Banks

- To characterize context, we used to use filter banks like "MR8":
	- 1 Gaussian filter, 1 Laplacian of Gaussian filter.
	- 6 max(abs(Gabor)) filters:
		- 3 scales of sine/cosine (maxed over 6 orientations).

• Convolutional neural networks (next time!) are replacing filter banks.

Now back to our regularly scheduled program

1D Convolution as Matrix Multiplication

• 1D convolution:

– Takes signal 'x' and filter 'w' to produces vector 'z':

1D Convolution as Matrix Multiplication

• Each element of a convolution is an inner product:

$$
Z_{i} = \sum_{j=m}^{m} w_{j} x_{i+j}
$$
\n
$$
= w^{T} x_{(j-m:i+m)}
$$
\n
$$
= w^{T} x_{j+m:n}
$$
\n
$$
= \omega^{T} x_{j+m:n}
$$
\n
$$
= \omega^{T} x_{j+m:n}
$$
\n
$$
= \omega^{T} x_{j+m:n}
$$

• So convolution is a matrix multiplication (I'm ignoring boundaries):

$$
z = \widetilde{W}_{x} \text{ where } \widetilde{W} = \begin{bmatrix} 0 & w & w & 0 & 0 \\ 0 & 0 & -w & w & 0 \\ 0 & 0 & 0 & w & w \end{bmatrix} \text{ matrix can be}
$$

Then shorter 'w' is the more sense the matrix is only has $2m^{11}$ variables.

• The shorter 'w' is, the more sparse the matrix is.

2D Convolution as Matrix Multiplication

 Z

• 2D convolution:

– Signal 'x', filter 'w', and output 'z' are now all images/matrices:

– Vectorized 'z' can be written as a matrix multiplication with vectorized 'x':

- Consider training neural networks on 256 by 256 images. $-$ This is 256 by 256 by 3 ≈ 200,000 inputs.
- If first layer has k=10,000, then it has about 2 billion parameters.
	- We want to avoid this huge number (due to storage and overfitting).
- Key idea: make Wx; act like several convolutions (to make it sparse):

 $w_i = 20000 - w - 0000$
 $w_i = 20 - w - 00000$

- 1. Each row of W only applies to part of x_i .
- 2. Use the same parameters between rows.

• Forces most weights to be zero, reduces number of parameters.

- Classic vision methods uses fixed convolutions as features:
	- Usually have different types/variances/orientations.
	- Can do subsampling or take maxes across locations/orientations/scales.

- Convolutional neural networks learn the convolutions:
	- Learning 'W' and 'v' automatically chooses types/variances/orientations.
	- Don't pick from fixed convolutions, but learn the elements of the filters.

- Convolutional neural networks learn the convolutions:
	- Learning 'W' and 'v' automatically chooses types/variances/orientations.
	- Can do multiple layers of convolution to get deep hierarchical features.

Two Main Motivations

- Translation invariance (data-efficient to learn, less likely to overfit)
- Hierarchy

Hierarchically composed feature representations

Hierarchy of feature representations

Face detectors

Face parts (combination of edges)

edges

- Convolutional Neural Networks classically have 3 layer "types":
	- Fully connected layer: usual neural network layer with unrestricted W.

- Convolutional Neural Networks classically have 3 layer "types":
	- Fully connected layer: usual neural network layer with unrestricted W.
	-

- Convolutional Neural Networks classically have 3 layer "types":
	- Fully connected layer: usual neural network layer with unrestricted W.
	- Convolutional layer: restrict W to act like several convolutions.
	- Pooling layer: combine results of convolutions.
		- Can add some invariance or just make the number of parameters smaller.
		- Often 'max pooling':

- Convolutional Neural Networks classically have 3 layer "types":
	- Fully connected layer: usual neural network layer with unrestricted W.
	- Convolutional layer: restrict W to act like several convolutions.
	- Pooling layer: combine results of convolutions.
		- Can add some invariance or just make the number of parameters smaller.
		- Often 'max pooling' or else 'average pooling':

Max Pooling vs Average Pooling

- Both downsample the image
- Max pooling: "any of these options is present"
	- Much more common, especially in early layers
	- "There's an edge here, but I don't really care how thick it is"
- Average pooling: "all/most of these options are present"
	- If used, more often at the end of the network
	- "Most of the big patches look like a picture of a train"

LeNet for Optical Character Recognition

Deep Hierarchies in the Visual System

http://www.strokenetwork.org/newsletter/articles/vision.htm https://en.wikibooks.org/wiki/Sensory_Systems/Visual_Signal_Processing

Deep Hierarchies in Optics

[Convolutiona](http://scs.ryerson.ca/~aharley/vis/conv)l Neural N

Classic convolutional neural network (LeNet

- Visualizing the "activations" of the layers:
	- http://scs.ryerson.ca/~aharley/vis/conv
	- https://youtu.be/AgkfIQ4IGaM

Next

• A very small selection of key advances, things you should know, and tricks of the trade

Recent Lectures: Deep Learning

• We've been discussing neural network / deep learning models:

$$
\sum_{i} w_i = \sum_{i} w_i + \sum_{j} w_j +
$$

- We discussed unprecedented vision/speech performance.
- We discussed methods to make SGD work better:
	- Parameter initialization and data transformations.
	- Setting the step size(s) in stochastic gradient and using momentum.
	- Alternative non-linear functions like ReLU.

 $m\alpha x \{0, z_{ic}\}$

"Residual" Networks (ResNets)

• Impactful recent idea is residual networks (ResNets):

Figure 2. Residual learning: a building block.

- You can take previous (non-transformed) layer as input to current layer.
	- Also called "skip connections" or "highway networks".
- Non-linear part of the network only needs to model residuals.
	- Non-linear parts are just "pushing up or down" a linear model in various places.
- This was a key idea behind first methods that used 100+ layers.
	- Evidence that biological networks have skip connections like this.

DenseNet

- More recent variation is "DenseNets":
	- Each layer can see all the values from many previous layers.
	- Gets rid of vanishing gradients.
	- May get same performance with fewer parameters/layers.

 $\sqrt{2}$

Figure 1: A 5-layer dense block with a growth rate of $k = 4$. Each layer takes all preceding feature-maps as input.

Deep Learning and the Fundamental Trade-Off

- Neural networks are subject to the fundamental trade-off:
	- With increasing depth, training error of global optima decreases.
	- With increasing depth, training error may poorly approximate test error.
- We want deep networks to model highly non-linear data.
	- But increasing the depth can lead to overfitting.
- How could GoogLeNet use 22 layers?
	- Many forms of regularization and keeping model complexity under control.
	- Unlike linear models, typically use multiple types of regularization.

Standard Regularization

• Traditionally, we've added our usual L2-regularizers:

$$
f(v_1^{(3)}w^{(2)}y^{(1)}) = \frac{1}{2} \sum_{i=1}^{2} (v^7 h(w^{(3)}h(w^{(2)}h(w^{(1)}y_i))) - y_i^3 + \frac{1}{2} ||v||^2 + \frac{1}{2} ||w^{(3)}||_F^2 + \frac{1}{2} ||w^{(2)}||_F^2 + \frac{1}{2} ||w^{(3)}||_F^2
$$

- L2-regularization often called "weight decay" in this context.
	- Could also use L1-regularization: gives sparse network.

Standard Regularization

• Traditionally, we've added our usual L2-regularizers:

$$
\int (v \int_{0}^{(3)} W^{(2)}(w^{(1)}) = \frac{1}{2} \sum_{i=1}^{n} (v^{7} h(w^{(3)} h(w^{(2)} h(w^{(1)}x_{i}))) - y_{i})^{2} + \frac{1}{2} ||v||^{2} + \frac{1}{2} ||w^{(3)}||_{F}^{2} + \frac{1}{2} ||w^{(2)}||_{F}^{2} + \frac{3}{2} ||w^{(3)}||_{F}^{2}
$$

- L2-regularization often called "weight decay" in this context.
	- Adds λ W to gradient, so (S)GD "decays" the weights 'W' at each step
	- Could also use L1-regularization: gives sparse network.
- Hyper-parameter optimization gets expensive:
	- Try to optimize validation error in terms of λ_1 , λ_2 , λ_3 , λ_4 .
	- In addition to step-size, number of layers, size of layers, initialization.
- Recent result:
	- Adding a regularizer in this way can create bad local optima.

Early Stopping

- Another common type of regularization is "early stopping":
	- Monitor the validation error as we run stochastic gradient.
	- Stop the algorithm if validation error starts increasing.

Dropout

- Dropout is a more recent form of explicit regularization:
	- On each iteration, randomly set some x_i and z_i to zero (often use 50%).

- Adds invariance to missing inputs or latent factors
	- Encourages distributed representation rather than relying on specific z_i.
- Can be interpreted as an ensemble over networks with different parts missing.
- After a lot of early success, dropout is already kind of going out of fashion.

"Hidden" Regularization in Neural Networks

• Fitting single-layer neural network with SGD and no regularization:

- Training goes to 0 with enough units: we're finding a global min.
- What should happen to training and test error for larger #hidden?

"Hidden" Regularization in Neural Networks

• Fitting single-layer neural network with SGD and no regularization:

- Test error continues to go down!?! Where is fundamental trade-off??
- There exist global mins with large #hidden units have test error = 1.
	- But among the global minima, SGD is somehow converging to "good" ones.

Implicit Regularization of SGD

- There is growing evidence that using SGD regularizes parameters. – We call this the "implicit regularization" of the optimization algorithm.
- Beyond empirical evidence, we know this happens in simpler cases.
- Example of implicit regularization:
	- Consider a least squares problem where there exists a 'w' where $X w = y$.
		- Residuals are all zero, we fit the data exactly.
	- You run [stochastic] gradient descent starting from w=0.
	- $-$ Converges to solution X w = y that has the minimum L2-norm.
		- So using SGD is equivalent to L2-regularization here, but regularization is "implicit".

Implicit Regularization of SGD

- Example of implicit regularization:
	- Consider a logistic regression problem where data is linearly separable.
		- We can fit the data exactly.
	- You run gradient descent from any starting point.
	- Converges to max-margin solution of the problem.
		- So using gradient descent is equivalent to encouraging large margin.

• Similar result known for **boosting**.

(pause)

Deep Learning "Tricks of the Trade"

- We've discussed heuristics to make deep learning work:
	- Parameter initialization and data transformations.
	- Setting the step size(s) in stochastic gradient and using momentum.
	- RestNets and alternative non-linear functions like ReLU.
	- Different forms of regularization:
		- L2-regularization, early stopping, dropout, implicit regularization from SGD.
- These are often still not enough to get deep models working.
- Deep computer vision models are all convolutional neural networks:
	- $-$ The W^(m) are very sparse and have repeated parameters ("tied weights").
	- Drastically reduces number of parameters (speeds training, reduces overfitting).

Summary

- ResNets include untransformed previous layers.
	- Network focuses non-linearity on residual, allows huge number of layers.
- Regularization is crucial to neural net performance:
	- L2-regularization, early stopping, dropout, implicit regularization of SGD.
- Convolutional neural networks:
	- Restrict $W^{(m)}$ matrices to represent sets of convolutions.
	- Often combined with max (pooling).

• Next time: modern convolutional neural networks and applications.

– Image segmentation, depth estimation, image colorization, artistic style.