
CPSC 340:
Machine Learning and Data Mining

Convolutional Neural Networks 
(and miscellaneous deep learning tricks)

Spring 2022 (2021W2)



Admin
• A6 is out. Get it done early!
– Due April 8th

• Bonus! 100% grade in class for anyone who attends today’s class 
virtually! 
– Click here to redeem offer within 2 minutes:

• https://tinyurl.com/100percentGradeFor340

https://tinyurl.com/100percentGradeFor340


Admin
• Plan for April 6th (next wed)
– An experiment!

• We will watch two videos from my research past
– With live questions!

• Deep Visualization Toolbox: 
https://www.youtube.com/watch?v=AgkfIQ4IGaM

• Deep Learning Overview & Visualizing What Deep Neural Networks 
Learn

• https://www.youtube.com/watch?v=3lp9eN5JE2A

https://www.youtube.com/watch?v=AgkfIQ4IGaM
https://www.youtube.com/watch?v=3lp9eN5JE2A


But first
• A want to briefly revisit two things I flew through



Setting the Step-Size
• Stochastic gradient is very sensitive to the step size in deep models.
• Bias step-size multiplier: use bigger step-size for the bias variables.
• Momentum (stochastic version of “heavy-ball” algorithm):
– Add term that moves in previous direction:

– Usually βt = 0.9.



Gradient Descent vs. Heavy-Ball Method



Gradient Descent vs. Heavy-Ball Method



Gradient Descent vs. Heavy-Ball Method



Gradient Descent vs. Heavy-Ball Method



Gradient Descent vs. Heavy-Ball Method



Gradient Descent vs. Heavy-Ball Method



Gradient Descent vs. Heavy-Ball Method



Gradient Descent vs. Heavy-Ball Method

Good demo to check out: https://distill.pub/2017/momentum/

https://distill.pub/2017/momentum/


Convolutions as Features
• Classic vision methods use convolutions as features:
– Usually have different types/variances/orientations.
– Can take maxes across locations/orientations/scales.

• Notable convolutions:
– Gaussian (blurring/averaging).
– Laplace of Gaussian

(second-derivative).
– Gabor filters

(directional first- or higher-derivative).



Filter Banks
• To characterize context, we used to use filter banks like “MR8”:
– 1 Gaussian filter, 1 Laplacian of Gaussian filter.
– 6 max(abs(Gabor)) filters:

• 3 scales of sine/cosine (maxed over 6 orientations).

• Convolutional neural networks (next time!) are replacing filter banks.
http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html



Now back to our regularly scheduled program



1D Convolution as Matrix Multiplication
• 1D convolution:
– Takes signal ‘x’ and filter ‘w’ to produces vector ‘z’:

– Can be written as a matrix multiplication:
Typo: the signs of -1 
and 2 are wrong in 
the matrix



1D Convolution as Matrix Multiplication
• Each element of a convolution is an inner product:

• So convolution is a matrix multiplication (I’m ignoring boundaries):

• The shorter ‘w’ is, the more sparse the matrix is.



2D Convolution as Matrix Multiplication
• 2D convolution:
– Signal ‘x’, filter ‘w’, and output ‘z’ are now all images/matrices:

– Vectorized ‘z’ can be written as a matrix multiplication with vectorized ‘x’:



Motivation for Convolutional Neural Networks
• Consider training neural networks on 256 by 256 images.
– This is 256 by 256 by 3 ≈ 200,000 inputs.

• If first layer has k=10,000, then it has about 2 billion parameters.
– We want to avoid this huge number (due to storage and overfitting).

• Key idea: make Wxi act like several convolutions (to make it sparse):
1. Each row of W only applies to part of xi.
2. Use the same parameters between rows.

• Forces most weights to be zero, reduces number of parameters.



Motivation for Convolutional Neural Networks
• Classic vision methods uses fixed convolutions as features:
– Usually have different types/variances/orientations.
– Can do subsampling or take maxes across locations/orientations/scales.



Motivation for Convolutional Neural Networks
• Convolutional neural networks learn the convolutions:
– Learning ‘W’ and ‘v’ automatically chooses types/variances/orientations.
– Don’t pick from fixed convolutions, but learn the elements of the filters.



Motivation for Convolutional Neural Networks
• Convolutional neural networks learn the convolutions:
– Learning ‘W’ and ‘v’ automatically chooses types/variances/orientations.
– Can do multiple layers of convolution to get deep hierarchical features.

http://fortune.com/ai-artificial-intelligence-deep-machine-learning/



Two Main Motivations
• Translation invariance (data-efficient to learn, less likely to overfit)
• Hierarchy



Hierarchically composed feature representations





Convolutional Neural Networks
• Convolutional Neural Networks classically have 3 layer “types”:
– Fully connected layer: usual neural network layer with unrestricted W.



Convolutional Neural Networks
• Convolutional Neural Networks classically have 3 layer “types”:
– Fully connected layer: usual neural network layer with unrestricted W.
– Convolutional layer: restrict W to act like several convolutions.



Convolutional Neural Networks
• Convolutional Neural Networks classically have 3 layer “types”:
– Fully connected layer: usual neural network layer with unrestricted W.
– Convolutional layer: restrict W to act like several convolutions.
– Pooling layer: combine results of convolutions.

• Can add some invariance or just make the number of parameters smaller.
• Often ‘max pooling’:



Convolutional Neural Networks
• Convolutional Neural Networks classically have 3 layer “types”:
– Fully connected layer: usual neural network layer with unrestricted W.
– Convolutional layer: restrict W to act like several convolutions.
– Pooling layer: combine results of convolutions.

• Can add some invariance or just make the number of parameters smaller.
• Often ‘max pooling’ or else ‘average pooling’:



Max Pooling vs Average Pooling
• Both downsample the image

• Max pooling: “any of these options is present”
– Much more common, especially in early layers
– “There’s an edge here, but I don’t really care how thick it is”

• Average pooling: “all/most of these options are present”
– If used, more often at the end of the network
– “Most of the big patches look like a picture of a train“



LeNet for Optical Character Recognition

http://blog.csdn.net/strint/article/details/44163869



Deep Hierarchies in the Visual System

http://www.strokenetwork.org/newsletter/articles/vision.htm
https://en.wikibooks.org/wiki/Sensory_Systems/Visual_Signal_Processing



Deep Hierarchies in Optics

http://www.argmin.net/2018/01/25/optics/



Convolutional Neural Networks
• Classic convolutional neural network (LeNet):

• Visualizing the “activations” of the layers:
– http://scs.ryerson.ca/~aharley/vis/conv
– https://youtu.be/AgkfIQ4IGaM

http://scs.ryerson.ca/~aharley/vis/harley_vis_isvc15.pdf

http://scs.ryerson.ca/~aharley/vis/conv


Next
• A very small selection of key advances, things you should know, and 

tricks of the trade



Recent Lectures: Deep Learning
• We’ve been discussing neural network / deep learning models:

• We discussed unprecedented vision/speech performance.

• We discussed methods to make SGD work better:
– Parameter initialization and data transformations.
– Setting the step size(s) in stochastic gradient and using momentum.
– Alternative non-linear functions like ReLU.

https://arxiv.org/pdf/1409.0575v3.pdf



“Residual” Networks (ResNets)
• Impactful recent idea is residual networks (ResNets):

– You can take previous (non-transformed) layer as input to current layer.
• Also called “skip connections” or “highway networks”.

– Non-linear part of the network only needs to model residuals.
• Non-linear parts are just “pushing up or down” a linear model in various places.

– This was a key idea behind first methods that used 100+ layers.
• Evidence that biological networks have skip connections like this.

https://en.wikipedia.org/wiki/Residual_neural_network



DenseNet
• More recent variation is “DenseNets”:
– Each layer can see all the values from many previous layers.
– Gets rid of vanishing gradients.

– May get same performance
with fewer parameters/layers.

https://arxiv.org/abs/1512.03385



Deep Learning and the Fundamental Trade-Off
• Neural networks are subject to the fundamental trade-off:
– With increasing depth, training error of global optima decreases.
– With increasing depth, training error may poorly approximate test error.

• We want deep networks to model highly non-linear data.
– But increasing the depth can lead to overfitting.

• How could GoogLeNet use 22 layers?
– Many forms of regularization and keeping model complexity under control.
– Unlike linear models, typically use multiple types of regularization. 



Standard Regularization
• Traditionally, we’ve added our usual L2-regularizers:

• L2-regularization often called “weight decay” in this context.
– Could also use L1-regularization: gives sparse network.



Standard Regularization
• Traditionally, we’ve added our usual L2-regularizers:

• L2-regularization often called “weight decay” in this context.
– Adds 𝜆W to gradient, so (S)GD “decays” the weights ‘W’ at each step
– Could also use L1-regularization: gives sparse network.

• Hyper-parameter optimization gets expensive:
– Try to optimize validation error in terms of λ1, λ2, λ3, λ4.
– In addition to step-size, number of layers, size of layers, initialization.

• Recent result:
– Adding a regularizer in this way can create bad local optima.



Early Stopping
• Another common type of regularization is “early stopping”:
– Monitor the validation error as we run stochastic gradient.
– Stop the algorithm if validation error starts increasing.

http://cs231n.github.io/neural-networks-3/



Dropout
• Dropout is a more recent form of explicit regularization:
– On each iteration, randomly set some xi and zi to zero (often use 50%).

– Adds invariance to missing inputs or latent factors 
• Encourages distributed representation rather than relying on specific zi.

– Can be interpreted as an ensemble over networks with different parts missing.
– After a lot of early success, dropout is already kind of going out of fashion.

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf



“Hidden” Regularization in Neural Networks
• Fitting single-layer neural network with SGD and no regularization:

• Training goes to 0 with enough units: we’re finding a global min.

• What should happen to training and test error for larger #hidden?
https://www.neyshabur.net/papers/inductive_bias_poster.pdf



“Hidden” Regularization in Neural Networks
• Fitting single-layer neural network with SGD and no regularization:

• Test error continues to go down!?! Where is fundamental trade-off??
• There exist global mins with large #hidden units have test error = 1.
– But among the global minima, SGD is somehow converging to “good” ones.

https://www.neyshabur.net/papers/inductive_bias_poster.pdf



Implicit Regularization of SGD
• There is growing evidence that using SGD regularizes parameters.
– We call this the “implicit regularization” of the optimization algorithm.

• Beyond empirical evidence, we know this happens in simpler cases.

• Example of implicit regularization:
– Consider a least squares problem where there exists a ‘w’ where X w = y.

• Residuals are all zero, we fit the data exactly.
– You run [stochastic] gradient descent starting from w=0.
– Converges to solution X w = y that has the minimum L2-norm.

• So using SGD is equivalent to L2-regularization here, but regularization is “implicit”.



Implicit Regularization of SGD
• Example of implicit regularization:
– Consider a logistic regression problem where data is linearly separable.

• We can fit the data exactly.
– You run gradient descent from any starting point.
– Converges to max-margin solution of the problem.

• So using gradient descent is equivalent to encouraging large margin.

• Similar result known for boosting.



(pause)



Deep Learning “Tricks of the Trade”
• We’ve discussed heuristics to make deep learning work:
– Parameter initialization and data transformations.
– Setting the step size(s) in stochastic gradient and using momentum.
– RestNets and alternative non-linear functions like ReLU.
– Different forms of regularization:

• L2-regularization, early stopping, dropout, implicit regularization from SGD.

• These are often still not enough to get deep models working.

• Deep computer vision models are all convolutional neural networks:
– The W(m) are very sparse and have repeated parameters (“tied weights”).
– Drastically reduces number of parameters (speeds training, reduces overfitting).



Summary
• ResNets include untransformed previous layers.
– Network focuses non-linearity on residual, allows huge number of layers.

• Regularization is crucial to neural net performance:
– L2-regularization, early stopping, dropout, implicit regularization of SGD.

• Convolutional neural networks:
– Restrict W(m) matrices to represent sets of convolutions.
– Often combined with max (pooling).

• Next time: modern convolutional neural networks and applications.
– Image segmentation, depth estimation, image colorization, artistic style.


