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Motivation: Automatic Brain Tumor Segmentation
• Task: labeling tumors and normal tissue in multi-modal MRI data.

• Applications:
– Radiation therapy target planning, quantifying treatment responses.
– Mining growth patterns, image-guided surgery.

• Challenges:
– Variety of tumor appearances, similarity to normal tissue.
– “You are never going to solve this problem.”

Input: Output:



Naïve Voxel-Level Classifier
• We could treat classifying a voxel as supervised learning:
– Standard representation of image: each pixel gets “intensity” between 0 and 255.

• We can formulate predicting yi given xi as supervised learning.
• But it doesn’t work at all with these features.



Need to Summarize Local Context
• The individual pixel intensity values are almost meaningless:
– The same xi could lead to different yi.

• Intensities not standardized.
• Non-trivial overlap in signal for different tissue types.
• “Partial volume” effects at boundaries of tissue types.



Need to Summarize Local Context
• We need to represent the “context” of the pixel (what is around it).

– Include all the values of neighbouring pixels as extra features?
• Run into coupon collection problems: requires lots of data to find patterns.

– Measure neighbourhood summary statistics (mean, variance, histogram)?
• Variation on bag of words problem: loses spatial information present in voxels.

– Standard approach uses convolutions to represent neighbourhood.



Example: Measuring “brightness” of an Area
- This pixel is in a “bright” area of the image, which reflects “bleeding” of tumour.
- But the actual numeric intensity value of the pixel is the same as in darker
“gray matter” areas.

- I want a feature saying “this pixel is in a bright area of the image”.
- This will us help identify that it’s a tumour pixel.

- How to measure brightness in area? Easy way: take average pixel intensity in “neighbourhood”.

- Applying this “averaging” to every pixel gives a new image:

- We can use “pixel value in new image” as a new feature.
- New feature helps identify if pixel is in a “bright” area.



The annoying thing about squares
• “Take the average of a square window” loses spatial information.
• Example:



Fixing the “square” issues
• Consider instead “blurring” the image.
– Gets rid of “local” noise, but better preserves spatial information.

• How do you “blur”?
– Take weighted average of window, putting more “weight” on “close” pixels:



Fixing the “square” issues
• Another neat thing we can do: use negative weights.
– These features can describe “differences” across space.

• Taking a “weighted average of neighbours” is called “convolution”.
– Gives you something like the “words” that make up image regions.



Convolution: Big Picture
• How do you use convolution to get features?
– Apply several different convolutions to your image.
– Each convolution gives a different “image” value at each location.
– Use theses different image values to give features at each location.



Convolutions: Big Picture
• What can features coming from convolutions represent?
– Some filters give you an average value of the neighbourhood.

– Some filters approximate the “first derivative” in the neighbourhood.
• “Is there a change from dark to bright?”
• “If so, from which direction in space?”

– Some filters approximate the “second derivative” in the neighbourhood.
• “Is there a spike or is the change speeding up?”

• Hope: we can characterize “what happens in a neighbourhood”,
with just a few numbers.



1D Convolution Example
• Consider a 1D “signal” (maybe from sound):
– We’ll come back to images later.

• For each “time”:
– Compute dot-product of signal at surrounding times with a “filter” of weights.

• This gives a new “signal”:
– Measures a property of “neighbourhood”.
– This particular filter shows a local 

“how spiky ” value.



1D Convolution (notation is specific to this lecture)

• 1D convolution input:
– Signal ‘x’ which is a vector length ‘n’.

• Indexed by i = 1, 2, …, n

– Filter ‘w’ which is a vector of length ‘2m+1’:
• Indexed by i = -m, -m+1, …, -2, 0, 1, 2, …, m-1, m

• Output is a vector of length ‘n’ with elements:

– You can think of this as centering w at position ‘i’,
and taking a dot product of ‘w’ with that “part” xi. 



1D Convolution
• 1D convolution example:
– Signal ‘x’:

– Filter ‘w’:

– Convolution ‘z’:

0 1 1 2 3 5 8 13

0 -1 2 -1 0
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• 1D convolution example:
– Signal ‘x’:

– Filter ‘w’:
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1D Convolution
• 1D convolution example:
– Signal ‘x’:

– Filter ‘w’:

– Convolution ‘z’:

0 1 1 2 3 5 8 13

0 -1 2 -1 0

-1 0 -1 -1



1D Convolution Examples
• Examples: 
– “Identity”

– “Translation”



1D Convolution Examples
• Examples: 
– “Identity”

– “Local Average”



Boundary Issue
• What can we do about the “?” at the edges?

• Can assign values past the boundaries:
• “Zero”:

• “Replicate”:

• “Mirror”:

• Or just ignore the “?” values and return a shorter vector:



Formal Convolution Definition
• We’ve defined the convolution as:

• In other classes you may see it defined as:

• For simplicity we’re skipping the “reverse” step,
and assuming ‘w’ and ‘x’ are sampled at discrete points (not functions).

• But keep this mind if you read about convolutions elsewhere.



1D Convolution Examples
• Translation convolution shift signal:
– “What is my neighbour’s value?”



1D Convolution Examples
• Averaging convolution (“is signal generally high in this region?”
– Less sensitive to noise (or spikes) than raw signal.



1D Convolution Examples
• Gaussian convolution (“blurring”):
– Compared to averaging it’s more smooth and maintains peaks better.



1D Convolution Examples
• Sharpen convolution enhances peaks.
– An “average” that places negative weights on the surrounding pixels.



1D Convolution Examples
• Centered difference convolution approximates first derivative:
– Positive means change from low to high (negative means high to low).



Digression: Derivatives and Integrals
• Numerical derivative approximations can be viewed as filters:
– Centered difference: [-1, 0, 1]

(like check_correctness in the homework code)

• Numerical integration approximations can be viewed as filters:
– “Simpson’s” rule: [1/6, 4/6, 1/6] (a bit like Gaussian filter).

• Derivative filters add to 0, integration filters add to 1 
– For constant function, derivative should be 0 and average = constant. 34



1D Convolution Examples
• Laplacian convolution approximates second derivative:
– “Sum to zero” filters “respond” if input vector looks like the filter



Laplacian of Gaussian Filter
• Laplacian of Gaussian is a smoothed 2nd-derivative approximation:



Images and Higher-Order Convolution
• 2D convolution:
– Signal ‘x’ is the pixel intensities in an ‘n’ by ‘n’ image.
– Filter ‘w’ is the pixel intensities in a ‘2m+1’ by ‘2m+1’ image.

• The 2D convolution is given by:

• 3D and higher-order convolutions are defined similarly.

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1



Image Convolution Examples
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Image Convolution Examples



Image Convolution Examples

http://setosa.io/ev/image-kernels

http://setosa.io/ev/image-kernels


Image Convolution Examples



Image Convolution Examples



Image Convolution Examples



Image Convolution Examples



Image Convolution Examples



3D Convolution



3D Convolution



3D Convolution



3D Convolution



3D Convolution



Convolutions as Features
• Classic vision methods use convolutions as features:
– Usually have different types/variances/orientations.
– Can take maxes across locations/orientations/scales.

• Notable convolutions:
– Gaussian (blurring/averaging).
– Laplace of Gaussian

(second-derivative).
– Gabor filters

(directional first- or higher-derivative).



Filter Banks
• To characterize context, we used to use filter banks like “MR8”:
– 1 Gaussian filter, 1 Laplacian of Gaussian filter.
– 6 max(abs(Gabor)) filters:

• 3 scales of sine/cosine (maxed over 6 orientations).

• Convolutional neural networks (next time!) are replacing filter banks.
http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html



Summary
• Convolutions are flexible class of signal/image transformations.
– Can approximate directional derivatives and integrals at different scales.
– Max(convolutions) can yield features invariant to some transformations.

• Filter banks:
– Make features for a vision problem by taking a bunch of convolutions.

• Next time:
– Combining this with deep learning.



Global and Local Features for Domain Adaptation

• Suppose you want to solve a classification task,
where you have very little labeled data from your domain.

• But you have access to a huge dataset with the same labels,
from a different domain.

• Example:
– You want to label POS tags in medical articles, and pay a few $$$ to label 

some.
– You have access the thousands of examples of Wall Street Journal POS 

labels.

• Domain adaptation: using data from different domain to help.



Global and Local Features for Domain Adaptation

• “Frustratingly easy domain adaptation”:
– Use “global” features across the domains, and “local” features for each 

domain.
– “Global” features let you learn patterns that occur across domains.

• Leads to sensible predictions for new domains without any data.

– “Local” features let you learn patterns specific to each domain.
• Improves accuracy on particular domains where you have more data.

– For linear classifiers this would look like:



Image Coordinates
• Should we use the image coordinates?
– E.g., the pixel is at location (124, 78) in the image.

• Considerations:
– Is the interpretation different in different areas of the image?
– Are you using a linear model?

• Would “distance to center” be more logical?
– Do you have enough data to learn about all areas of the image?



Alignment-Based Features
• The position in the image is important in brain tumour application.
– But we didn’t have much data, so coordinates didn’t make sense.

• We aligned the images with a “template image”.



Alignment-Based Features
• The position in the image is important in brain tumour application.
– But we didn’t have much data, so coordinates didn’t make sense.

• We aligned the images with a “template image”.
– Allowed “alignment-based” features:



Motivation: Automatic Brain Tumor Segmentation
• Final features for brain tumour segmentation:

– Gaussian convolution of original/template/priors/symmetry, Laplacian of Gaussian on original.
• All with 3 variances.
• Max(Gabor) with sine and cosine  on orginal (3 variances).



Motivation: Automatic Brain Tumour Segmentation

• Logistic regression and SVMs among best methods.
– When using these 72 features from last slide.
– If you used all features I came up with, it overfit.

• Possible solutions to overfitting:
– Forward selection was too slow.

• Just one image gives 8 million training examples.

– I did manual feature selection (“guess and check”).
– L2-regularization with all features also worked.

• But this is slow at test time.
• L1-regularization gives best of regularization and feature selection.



FFT implementation of convolution
• Convolutions can be implemented using fast Fourier transform:
– Take FFT of image and filter, multiply elementwise, and take inverse FFT.

• It has faster asymptotic running time but there are some catches:
– You need to be using periodic boundary conditions for the convolution.
– Constants matter: it may not be faster in practice.

• Especially compared to using GPUs to do the convolution in hardware.

– The gains are largest for larger filters (compared to the image size).

74



SIFT Features
• Scale-invariant feature transform (SIFT):
– Features used for object detection (“is particular object in the image”?)
– Designed to detect unique visual features of objects at multiple scales.
– Proven useful for a variety of object detection tasks.

http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_sift_intro/py_sift_intro.html


