CPSC 340: Machine Learning and Data Mining

Deep Learning Spring 2022 (2021W2)

Admin

- Course surveys
 - Please fill them out
 - We care deeply about your education, so we take them very seriously
 - You will be able to evaluate the class overall, and then Mijung and I separately
 - Please use the text boxes to also let us know about the "lecture specialization experiment" [where we each specialized in half the lectures]
 - As always, please remember we're real people, so both praise and critical feedback are great. Please avoid personal, hurtful, or unconstructive negative comments.
- A5 deadline tonight
- A6 out soon: by Monday at the latest, due April 8 (our last class)

End of Part 4: Key Concepts

• We discussed linear latent-factor models:

$$f(W_{j}z) = \sum_{i=1}^{n} \sum_{j=1}^{d} (\langle w_{j}z_{i}\rangle - x_{ij}\rangle)^{2}$$
$$= \sum_{i=1}^{n} ||W^{T}z_{i} - x_{i}||^{2}$$
$$= ||ZW - X||_{F}^{2}$$

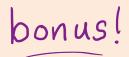
- Represent 'X' as linear combination of latent factors 'w_c'.
 - Latent features ' z_i ' give a lower-dimensional version of each ' x_i '.
 - When k=1, finds direction that minimizes squared orthogonal distance.
- Applications:
 - Outlier detection, dimensionality reduction, data compression, features for linear models, visualization, factor discovery, filling in missing entries.

End of Part 4: Key Concepts

• We discussed linear latent-factor models:

$$f(W_{j}z) = \hat{z}_{j=1} \hat{z}_{j=1} (\langle w_{j}z_{j} \rangle - x_{ij})^{2}$$

- Principal component analysis (PCA):
 - Often uses orthogonal factors and fits them sequentially (via SVD).
- Non-negative matrix factorization:
 - Uses non-negative factors giving sparsity.
 - Can be minimized with projected gradient.
- Many variations are possible:
 - Different regularizers (sparse coding) or loss functions (robust/binary PCA).
 - Missing values (recommender systems) or change of basis (kernel PCA).



End of Part 4: Key Concepts

- We didn't really discuss multi-dimensional scaling (MDS):
 - Non-parametric method for high-dimensional data visualization.
 - Tries to match distance/similarity in high-/low-dimensions.
 - "Gradient descent on scatterplot points".
- Main challenge in MDS methods is "crowding" effect:
 - Methods focus on large distances and lose local structure.
- Common solutions:
 - Sammon mapping: use weighted cost function.
 - ISOMAP: approximate geodesic distance using via shortest paths in graph.
 - T-SNE: give up on large distances and focus on neighbour distances.
- Word2vec is a recent MDS method giving better "word features".

Supervised Learning Roadmap

- Part 1: "Direct" Supervised Learning.
 - We learned parameters 'w' based on the original features x_i and target y_i.
- Part 3: Change of Basis.
 - We learned parameters 'v' based on a change of basis z_i and target y_i .
- Part 4: Latent-Factor Models.
 - We learned parameters 'W' for basis z_i based on only on features x_i .

Wn

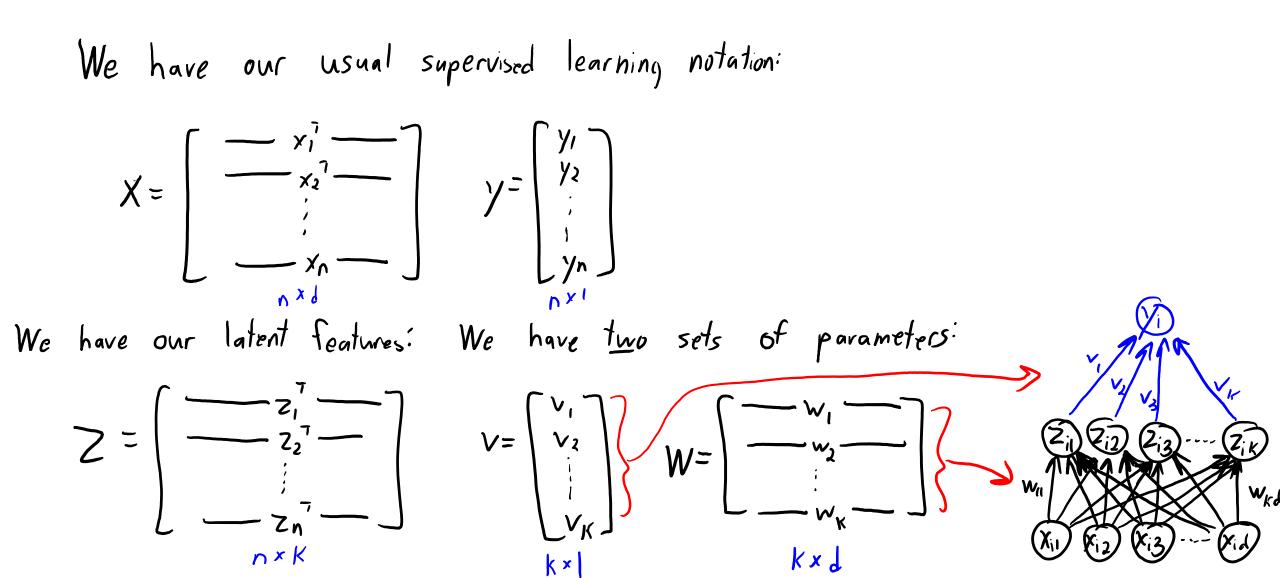
Wkd

- You can then learn 'v' based on change of basis z_i and target y_i .
- Part 5: Neural Networks.
 - Jointly learn 'W' and 'v' based on x_i and y_i .
 - Learn basis z_i that is good for supervised learning.

A Graphical Summary of CPSC 340 Parts 1-5

Part 1: "I have features xi" Part 3: Change of basis Part 4: basis from latent-factor Part 5: Neural networks model (X ,) 2_{12} (Zik Riz (Ziz) -- (Zik) "PCA will give me good features" TI think this Part 2:"What is the group of x;?" basis will work (\mathbf{x}_{1}) (\mathbf{x}_{2}) (x,n)- - (Xid) Learn features "What are the 'parts' of x;?" classifier at Traine scpuratel some time.

Notation for Neural Networks (MEMORIZE)



Linear-Linear Model

• Natural choice: linear latent-factor model with linear regression.

Use features from latent-factor model:
$$z_i = Wx_i$$

Make predictions using a linear model: $y_i = v^T z_i$

• We want to train 'W' and 'v' jointly, so we could minimize:

$$f(W,v) = \frac{1}{2} \sum_{i=1}^{n} (\sqrt{z_i} - y_i)^2 = \frac{1}{2} \sum_{i=1}^{n} (\sqrt{W_{x_i}} - y_i)^2$$

$$\lim_{\substack{\text{linear regression with } z_i \text{ as features}} \int_{\substack{\text{latent} - \text{factor model} \\ \text{latent} - \text{factor model}} (x_d)$$
• But this is just a linear model:
$$\int_{y_i} \sqrt{z_i} = \sqrt{z_i} = \sqrt{W_{x_i}} = (\sqrt{W_{x_i}}) = (\sqrt{W_{x_i}}) \sum_{\substack{x_i = w_{x_i} \\ \text{some vector } w}} (w_i) \sum_{\substack{x_i = w_{x_i} \\ \text{some vector$$

Introducing Non-Linearity

- To increase flexibility, something needs to be non-linear.
- Typical choice: transform z_i by non-linear function 'h'.

$$z_i = W_{x_i}$$
 $\hat{y}_i = v^T h(z_i)$

- Here the function 'h' transforms 'k' inputs to 'k' outputs.

• Common choice for 'h': applying sigmoid function element-wise:

$$h(z_{ic}) = \frac{1}{1 + exp(-z_{ic})}$$

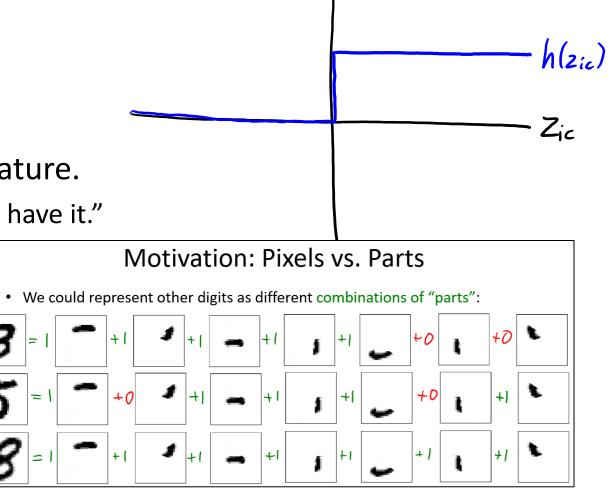
- So this takes the z_{ic} in $(-\infty,\infty)$ and maps it to (0,1).
- This is called a "multi-layer perceptron" or a "neural network".

Why Sigmoid?

• Consider setting 'h' to define binary features z_i using:

$$h(z_{ic}) = \begin{cases} 1 & \text{if } z_{ic} \neq 0 \\ 2 & \text{if } z_{ic} \neq 0 \end{cases}$$

- Each h(z_i) can be viewed as binary feature.
 - "You either have this 'part' or you don't have it."
- We can make 2^k objects by all the possible "part combinations".



Why Sigmoid?

Zic

• Consider setting 'h' to define binary features z_i using:

$$h(z_{ic}) = \begin{cases} 1 & \text{if } z_{ic} \neq 0 \\ 2 & \text{if } z_{ic} < 0 \end{cases}$$

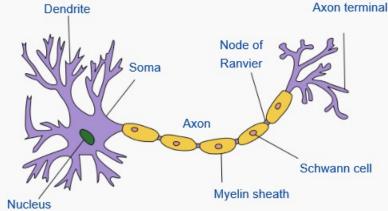
- Each h(zi) can be viewed as binary feature.
 - "You either have this 'part' or you don't have it."
- But this is hard to optimize (non-differentiable/discontinuous).
- Sigmoid is a smooth approximation to these binary features.
 - Non-parametric version is a universal approximator:
 - If 'k' grows appropriately with 'n', can model any continuous function.

Supervised Learning Roadmap

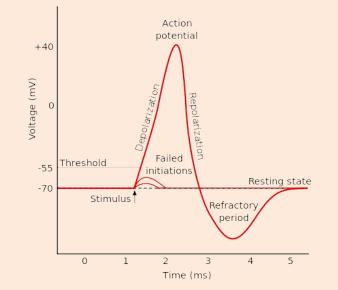
Hand-engineered features: Learn a latent-factor model: Learn 'n' and 'W' together: Neural network: Wal WKd VK Use latent features "I think this Wa in supervised model: WKd basis will work " (x12) (x13) ---- (x1d) Wn Wkd But still gives a linear model. (\mathbf{x}_{i}) (\mathbf{x}_{i}) --- (Zik) (Xid) Good representation of Requires domain Knowledge and can be time- consuming Extra non-linear transformation 'h' X; might be bad for predicting y;

Why "Neural Network"?

• Cartoon of "typical" neuron:

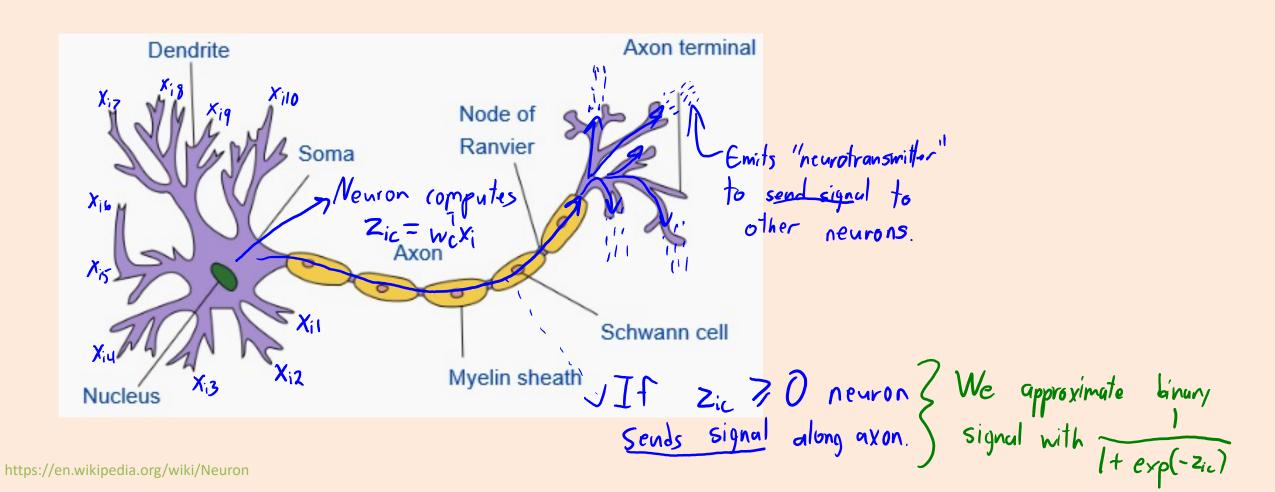


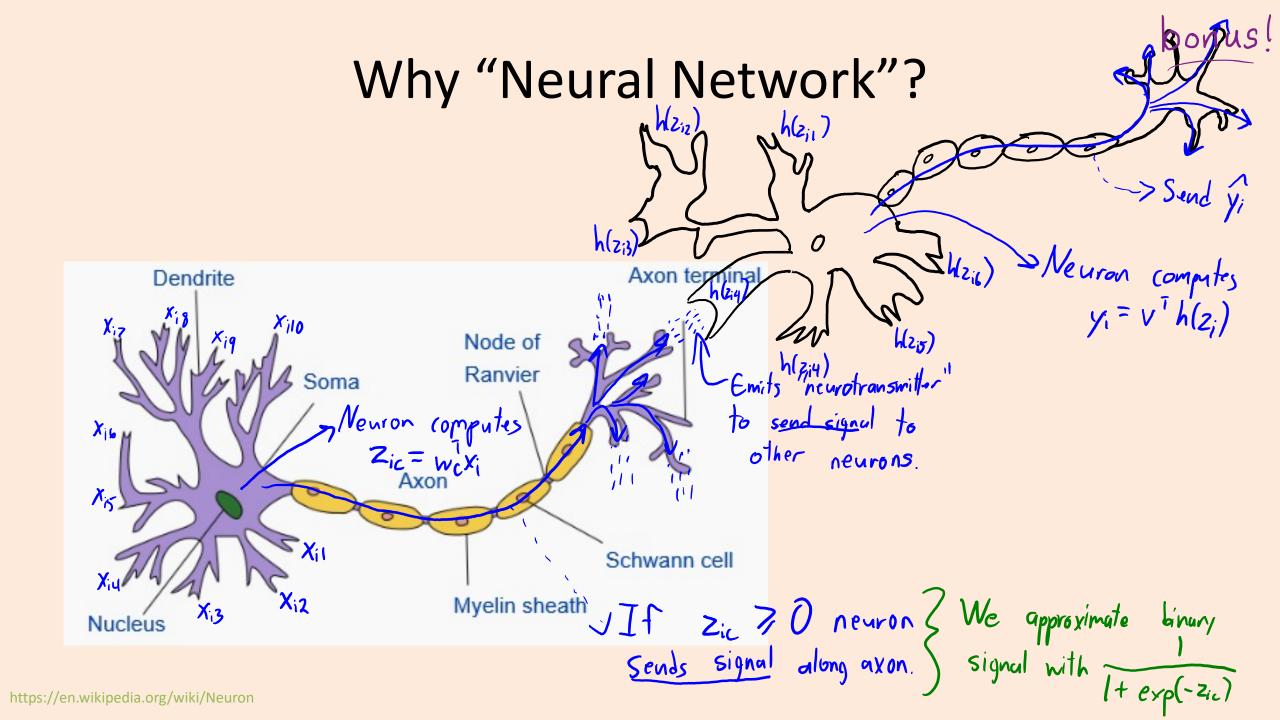
- Neuron has many "dendrites", which take an input signal.
- Neuron has a single "axon", which sends an output signal.
- With the right input to dendrites:
 - "Action potential" along axon (like a binary signal):



bonus!

Why "Neural Network"?





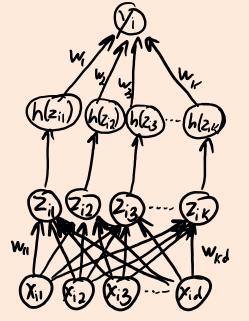
Why "Neural Network"?

-> Predictions based on aggregation Vh(Wx;) at y: "neuron" -> Synapse between Zik and y: "neuron" Spinary signal h(wcx;) sent along "axor" h(zk , Neuron aggregates signals: w.x. "dendrites" for Zik "neuron" are reciving xij values Wa WKd

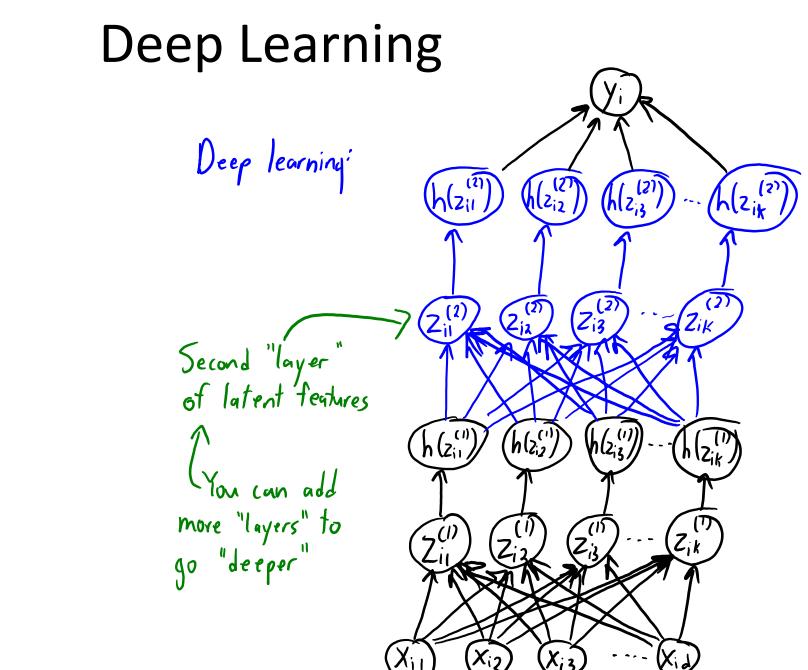
ponusl

"Artificial" Neural Nets vs. "Real" Networks Nets

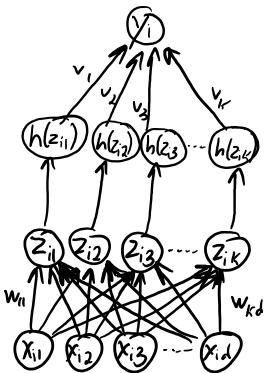
- Artificial neural network:
 - x_i is measurement of the world.
 - z_i is internal representation of world.
 - y_i is output of neuron for classification/regression.
- Real neural networks are more complicated:
 - Timing of action potentials seems to be important.
 - "Rate coding": frequency of action potentials simulates continuous output.
 - Neural networks don't reflect sparsity of action potentials.
 - How much computation is done inside neuron?
 - Brain is highly organized (e.g., substructures and cortical columns).
 - Connection structure changes.
 - Different types of neurotransmitters.



bonusl

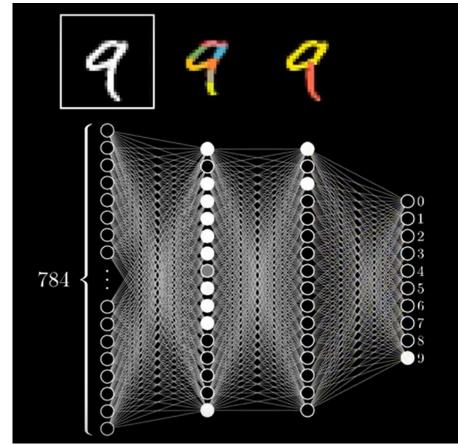


Neural network:



"Hierarchies of Parts" Motivation for Deep Learning

- Each "neuron" might recognize
 - a "part" of a digit.
 - "Deeper" neurons might recognize combinations of parts.
 - Represent complex objects as hierarchical combinations of re-useable parts (a simple "grammar").
- Watch the full video here:
 - <u>https://www.youtube.com/watch?v=aircAruvnKk</u>



- Theory:
 - 1 big-enough hidden layer already gives universal approximation.
 - But some functions require exponentially-fewer parameters to approximate with more layers (can fight curse of dimensionality).

Deep Learning Linear modeli $\dot{y}_i = w^T x_i$ Deep learning $(h(z_{i3}^{(2)}))$ (h(z(2))) h(212) Neural network with I hidden layer: $\gamma_i = v^T h(W_{x_i})$ (Zi3) Zik (2 Neural network with 2 hidden layers: $y_i = v^T h(W^{(2)}h(W^{(1)}x_i))$ Second "layer" of latent features $h(z_{i}^{(n)})$ (h(z;2)) $h(\overline{z_{ik}})$ You can add Neural network with 3 hidden layers $\hat{\gamma}_i = v^T h(W^{(3)}h(W^{(2)}h(W^{(1)}x_i)))$ more "layers" to (T. , Z, k go "deeper'

Deep Learning

• For 4 layers, we could write the prediction as:

$$\gamma_{i} = \sqrt{h} \left(W^{(4)} h(W^{(3)} h(W^{(2)} h(W^{(2)} x_{i}))) \right)$$

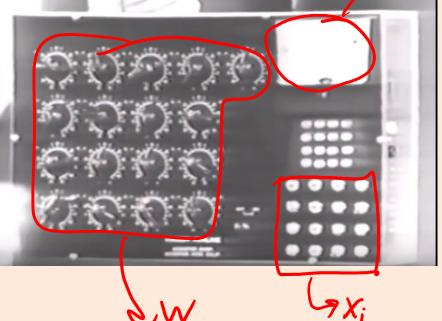
• For 'm' layers, we usually just say:

$$\hat{\gamma}_i = \sqrt{-h} \quad w^{(m)} h \left(\cdots h \left(w^{(1)} \times i \right) \right)$$



ML and Deep Learning History

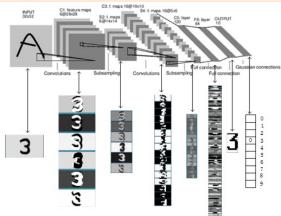
- 1950 and 1960s: Initial excitement.
 - Perceptron: linear classifier and stochastic gradient (roughly).
 - "the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence." w X; New York Times (1958).
 - https://www.youtube.com/watch?v=IEFRtz68m-8
 - Object recognition assigned to students as a summer project
- Then drop in popularity:
 - Quickly realized limitations of linear models.



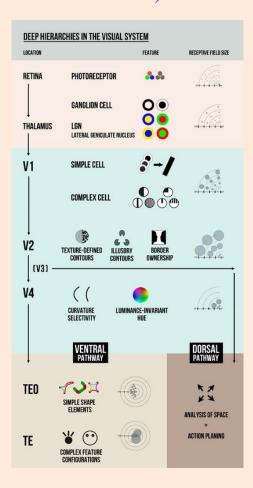
oonus!

ML and Deep Learning History

- 1970 and 1980s: Connectionism (brain-inspired ML)
 - Want "connected networks of simple units".
 - Use parallel computation and distributed representations.
 - Adding hidden layers z_i increases expressive power.
 - With 1 layer and enough sigmoid units, a universal approximator.
 - Success in optical character recognition.

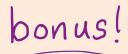


https://en.wikibooks.org/wiki/Sensory_Systems/Visual_Signal_Processing http://www.datarobot.com/blog/a-primer-on-deep-learning/ http://blog.csdn.net/strint/article/details/44163869



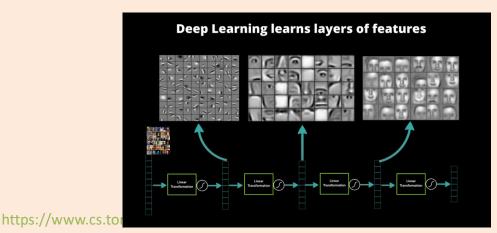
ML and Deep Learning History

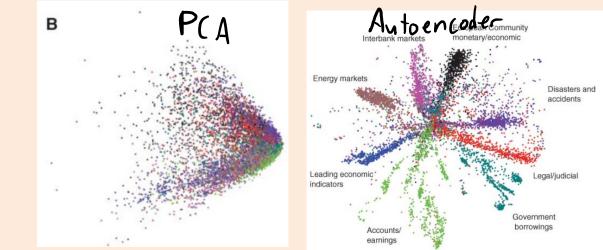
- 1990s and early-2000s: drop in popularity.
 - It proved really difficult to get multi-layer models working robustly.
 - We obtained similar performance with simpler models:
 - Rise in popularity of logistic regression and SVMs with regularization and kernels.
 - Lots of internet successes (spam filtering, web search, recommendation).
 - ML moved closer to other fields like numerical optimization and statistics.



ML and Deep Learning History

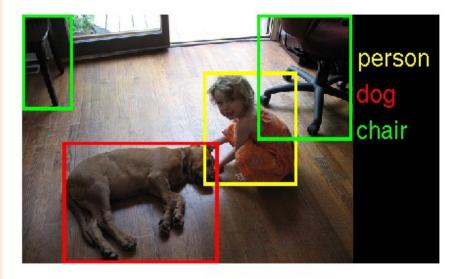
- Late 2000s: push to revive connectionism as "deep learning".
 - Canadian Institute For Advanced Research (CIFAR) NCAP program:
 - "Neural Computation and Adaptive Perception".
 - Led by Geoff Hinton, Yann LeCun, and Yoshua Bengio
 - Unsupervised successes: "deep belief networks" and "autoencoders".
 - Could be used to initialize deep neural networks.
 - https://www.youtube.com/watch?v=KuPai0ogiHk





2010s: DEEP LEARNING!!!

- Bigger datasets, bigger models, parallel computing (GPUs/clusters).
 And some tweaks to the models from the 1980s.
- Huge improvements in automatic speech recognition (2009).
 - All phones now have deep learning.
- Huge improvements in computer vision (2012).
 - Changed computer vision field almost instantly.
 - This is now finding its way into products.



http://www.image-net.org/challenges/LSVRC/2014/



2010s: DEEP LEARNING!!!

- Media hype:
 - "How many computers to identify a cat? 16,000"
 - New York Times (2012).
 - "Why Facebook is teaching its machines to think like humans" Wired (2013).
 - "What is 'deep learning' and why should businesses care?"
 Forbes (2013).
 - "Computer eyesight gets a lot more accurate"

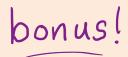
New York Times (2014).

• 2015: huge improvement in language understanding.

Summary

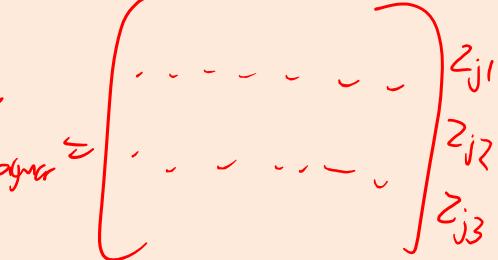
- Neural networks learn features z_i for supervised learning.
- Sigmoid function avoids degeneracy by introducing non-linearity.
 Universal approximator with large-enough 'k'.
- Biological motivation for (deep) neural networks.
- Deep learning considers neural networks with many hidden layers.
 Can more-efficiently represent some functions.
- Unprecedented performance on difficult pattern recognition tasks.

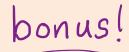
- Next time:
 - Training deep networks.



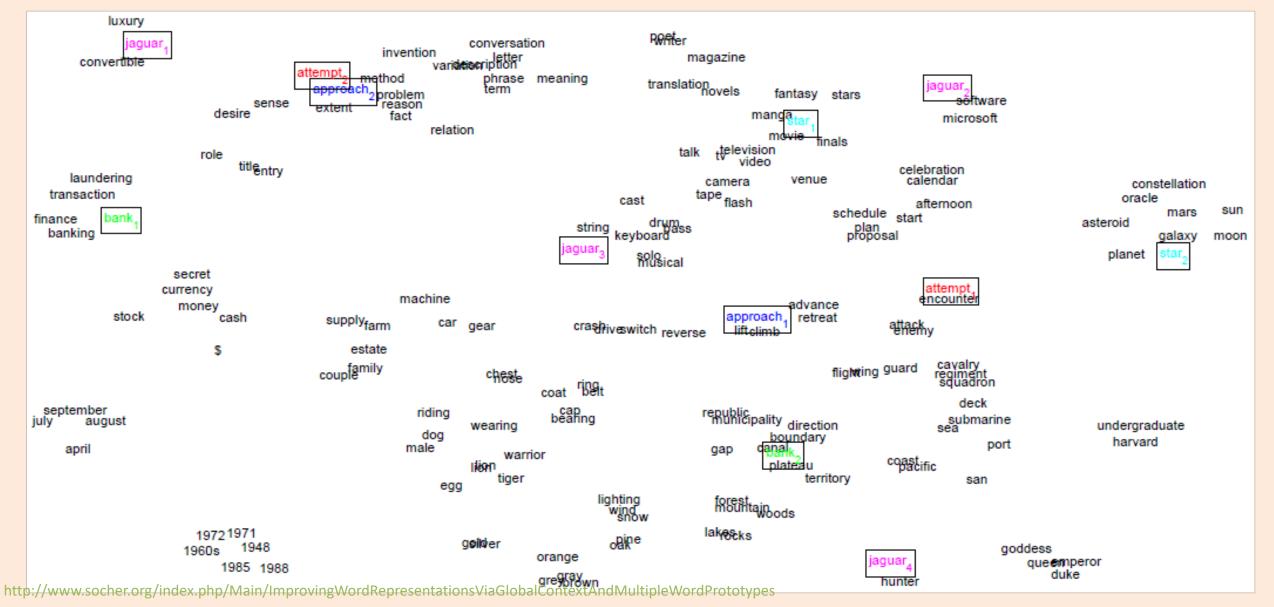
Multiple Word Prototypes

- What about homonyms and polysemy?
 - The word vectors would need to account for all meanings.
- More recent approaches:
 - Try to cluster the different contexts where words appear.
 - Use different vectors for different contexts.



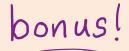


Multiple Word Prototypes

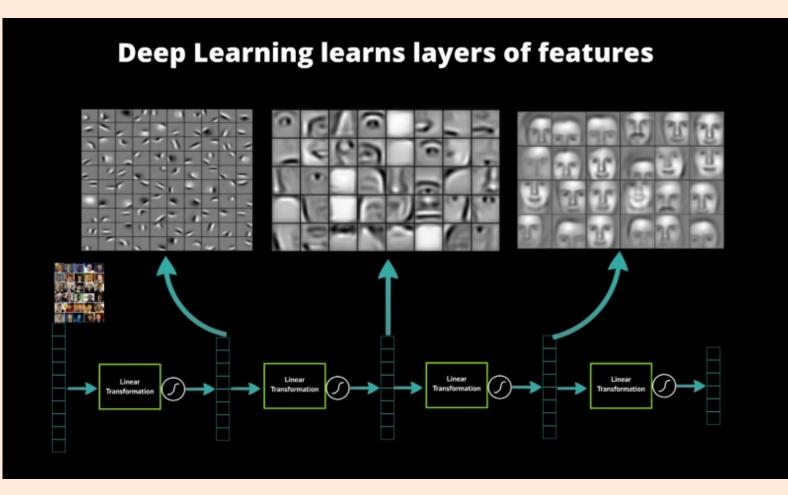


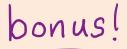
Why $z_i = Wx_i$?

- In PCA we had that the optimal $Z = XW^T(WW^T)^{-1}$.
- If W had normalized+orthogonal rows, Z = XW^T (since WW^T = I).
 - So $z_i = Wx_i$ in this normalized+orthogonal case.
- Why we would use $z_i = Wx_i$ in neural networks?
 - We didn't enforce normalization or orthogonality.
- Well, the value W^T(WW^T)⁻¹ is just "some matrix".
 - You can think of neural networks as just directly learning this matrix.

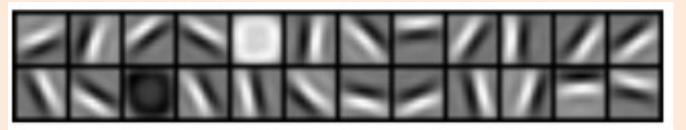


• Faces might be composed of different "parts":





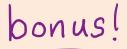
• First layer of z_i trained on 10 by 10 image patches:



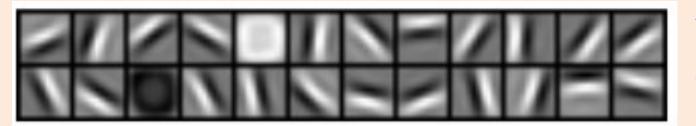
("Gabor filters"

- Attempt to visualize second layer:
 - Corners, angles, surface boundaries?
- Models require many tricks to work.
 We'll discuss these next time.



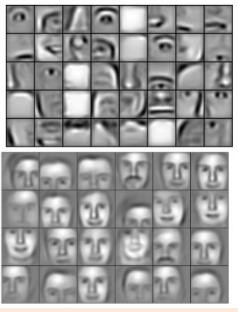


• First layer of z_i trained on 10 by 10 image patches:

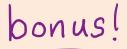


("Gabor filters"

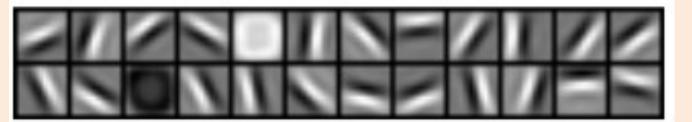
 Visualization of second and third layers trained on specific objects: faces



http://www.cs.toronto.edu/~rgrosse

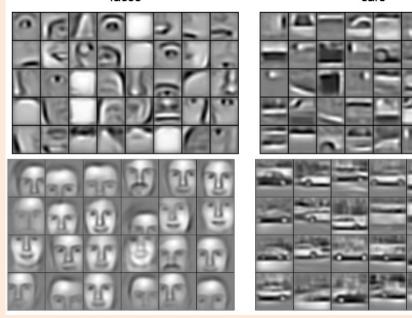


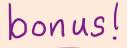
• First layer of z_i trained on 10 by 10 image patches:



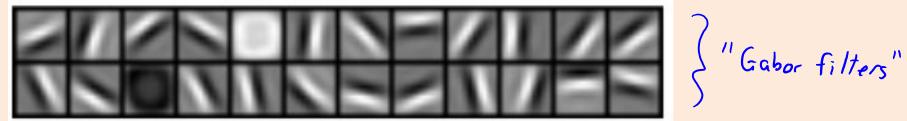
¿ "Gabor filters"

Visualization of second and third layers trained on specific objects:

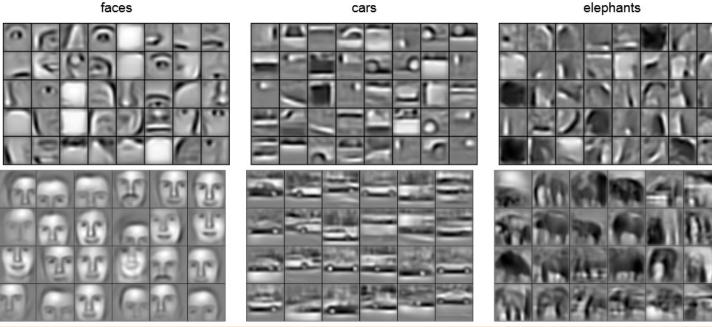


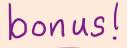


• First layer of z_i trained on 10 by 10 image patches:

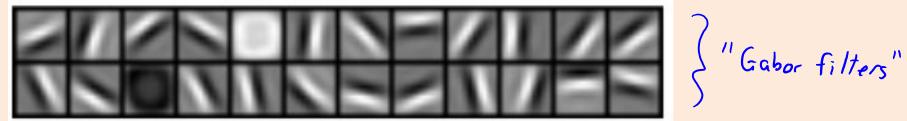


Visualization of second and third layers trained on specific objects:

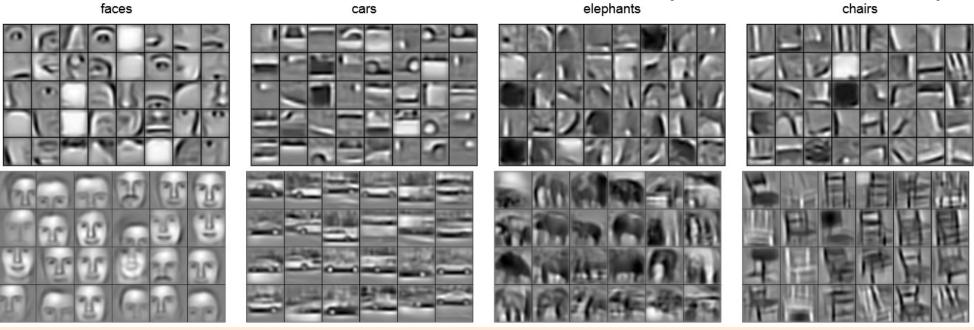


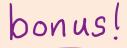


• First layer of z_i trained on 10 by 10 image patches:

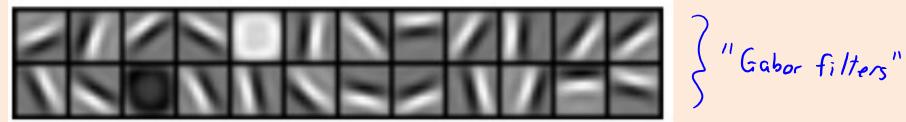


• Visualization of second and third layers trained on specific objects:





• First layer of z_i trained on 10 by 10 image patches:



Visualization of second and third layers trained on specific objects:

