CPSC 340:
Machine Learning and Data Mining

Kernel Trick
Spring 2022 (2021W?2)



Admin

e Assignment 4 Due this Friday (Mar 11)



Support Vector Machines for Non-Separable

* Can we use linear models for data that is not close to separable?




Support Vector Machines for Non-Separable

* Can we use linear models for data that is not close to separable?

— It may be separable under change of basis (or closer to separable).
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Support Vector Machines for Non-Separable

* Can we use linear models for data that is not close to separable?

— It may be separable under change of basis (or closer to separable).
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Support Vector Machines for Non-Separable

* Can we use linear models for data that is not close to separable?

— It may be separable under change of basis (or closer to separable)
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Multi-Dimensional Polynomial Basis

* Recall fitting polynomials when we only have 1 feature:

A

* We can fit these models using a change of basis:
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e How can we do this when we have a lot of features?



Multi-Dimensional Polynomial Basis

* Polynomial basis for d=2 and p=2:
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* With d=4 and p=3, the polynomial basis would include:
— Bias variable and the x;: 1, X1, Xj5, Xi3, Xig-
— The x;; squared and cubed: (xi1)? (Xi2)? (Xia)% (%ia)?, (%i1)?, (Xi2)3, (Xi3)3, (Xia)?.
— Two-term interactions: X;;Xi,, Xi1Xi3, Xi1Xia, Xi2Xi3, Xi2Xia, Xi3Xiz-

— Cubic interactions: Xi1Xi»X:3, Xi>XisXia, Xi1Xi3,Xiz, Xi1Xi2Xi,
Xir2Xin, Xi1ZXon, Xi12Xn, Xi1XinZ) Xin2Xin, XinZXin, Xi1XizZ, XioXiaZ ) Xin2Xiny Xin Xin2, XinXin2, XiaXis2
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Kernel Trick

If we go to degree p=5, we’ll have O(d>) quintic terms:
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For large ‘d” and ‘p’, storing a polynomial basis is intractable!
— ‘7" has k=0(dP) columns, so it does not fit in memory.

Could try to search for a good subset of these.
— “Hierarchical forward selection” (bonus).

Alternatively, you can use all of them with the “kernel trick”.
— A special case of L2-regularized linear models.



How can you use an exponential-sized basis?

* Which of these two expressions would you rather compute?
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— Expressions are equal, but left way costs O(p) while right costs O(1).

* Which of these two expressions would you rather compute?
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— Expressions are equal, but left way has infinite terms and right costs O(1).
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* Maybe we can somehow add weights to the expressions on the left,
and formulate least squares to use tricks like on the right?



The “Other” Normal Equations

Recall the L2-regularized least squares objective with basis ‘Z’:

(v ‘%HZV ‘\/”Z + %"\1”1
We showed that the minimum is given by
\/:(ZTZ"',/\I) / v
Kk x K

(in practice you still solve the linear system, since it’s faster and more numerically stable — see CPSC 302)

With some work (bonus), this can equivalently be written as:
T -1
V= Z-T (ZZ' +)I) >/
I\ )

. . . V
This is faster if n << k: nxn
— After forming ‘Z’, cost is O(n?k + n3) instead of O(nk? + k3).
— But for the polynomial basis, this is still too slow since k = O(dP).




The “Other” Normal Equations

~I
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* With the “other” normal equations we have v = V4 (ZZ + ;]I) y
* Given test data X, predict 9 by forming Z and then using:
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* Notice that if you have K and K then you do not need Z and Z.

* Key idea behind “kernel trick” for certain bases (like polynomials):

— We can efficiently compute K and K even though forming Z and Z is intractable.
* In the same way we can compute (x+1)° instead of x° + 9x8 + 36x” + 84x°...



Gram Matrix

* The matrix K=2Z"is called the Gram matrix K.
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* K contains the dot products between all training examples.
— Similar to ‘Z" in RBFs, but using dot product as “similarity” instead of distance.



Gram Matrix

« The matrix K = ZZ" has dot products between train and test examples:
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* Kernel function: k(x;, x;) = z;z,.
— Computes dot product between in basis (z,'z;) using original features x; and x.



Linear Regression vs. Kernel Regression
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Linear Regression vs. Kernel Regression
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Linear Regression vs. Kernel Regression
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Degenerate Example: “Linear Kernel”

* Consider two examples x; and x; for a 2-dimensional dataset:
Xi= (x‘-l)XaJ u))‘)z)
 And our standard (“linear”) ba5|s:
Z) = (X\ /)Xi2 ZJ: ()('I)XI2>
* In this case the inner product 2,'z; is k(x;,%;) = x;'x;:
Z X;TYB
T T



Example: Degree-2 Kernel

* Consider two examples x; and x; for a 2-dimensional dataset:
Xi= (Xn)Xaz) );))‘)2)
* Now consider a particular degree-z basis:
Gt (""zyﬁ "*""'27"*22) <= (% 215 52,%7)

* In this case the mner product 2,'z; is k(x;, %) = (x;'; )2
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Polynomial Kernel with Higher Degrees

* Let’s add a bias and linear terms to our degree-2 basis:
T
ci= [/ \ﬁxn ﬁxiz x"z \r-)(i/’('.( )/-22]

* |n this case the inner product Z;'Z; Is k(x,,x) =(1+ xTx)
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Polynomial Kernel with Higher Degrees

* To get all degree-4 “monomials” | can use:

k(x- x) < (X,j)(S)q
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* To also get lower-order terms use k(x;x;) = (1 + xiij)4
* The general degree-p polynomial kernel function:

k(X,‘7>(J'>: Cr+ X;7JS>()

— Works for any number of features ‘d’.
— But cost of computing one k(x; ;) is O(d) instead of O(dP) to compute z;'z,.
— Take-home message: | can compute dot-products without the features.



Kernel Trick with Polynomials

* Using polynomial basis of degree ‘p’ with the kernel trick:
— Compute K and K using:

Py =
=) ko= (% . iyt

— Make predictions using: iii’m,
>/ [((}(+§II> ’:Ku
trn o nx| \’7“:('(”1)"‘/

tx\
* Training cost is only O(n?d + n3), despite using k=O(dP) features.
— We can form ‘K’ in O(n?d), and we need to “invert” an ‘n x n’ matrix.

— Testing cost is only O(ndt), cost to form K.



Gaussian-RBF Kernel

e Most common kernel is the Gaussian RBF kernel:

k(X,7 J)’ ex ( "f'_—-mz)

202

 Same formula and behaviour as RBF basis, but not equivalent:

— Before we used RBFs as a basis, now we’re using them as inner-product.

* Basis z; giving Gaussian RBF kernel is infinite-dimensional.
— If d=1 and o=1, it corresponds to using this basis (bonus slide):

2 eq(=x" )L dFx 3F %2 Exﬁ z o :]



Motivation: Finding Gold

e Kernel methods first came from mining engineering (“Kriging”):
— Mining company wants to find gold.
— Drill holes, measure gold content.

— Build a kernel regression model (typically use [non-Gaussian] RBF kernels).

Input Process Output

s a Ordinary
. . "' ﬁ

Kriging
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[) —
Kernel Trick for Non-Vector Data
 Consider data that doesn’t look like this:
[ 0.5377 0.3188  3.5784 [+1]
y_ | 18339 —1.3077  2.7694 -1
— | —2.2588 —0.4336 —1.3499|° YT |-1|°
| 0.8622  0.3426  3.0349 | | +1]
* But instead looks like this:
[ Do you want to go for a drink sometime? | [+1]
J'achete du pain tous les jours. —1
o — . Y = »
Fais ce que tu veux. —1
| There are inner products between sentences? | +1

* We can interpret k(xi,xj) as a “similarity” between objects xi and x;j.
— We don’t need features if we can compute “similarity” between objects.
— Kernel trick lets us fit regression models without explicit features.

»” )«

— There are “string kernels”, “image kernels”, “graph kernels”, and so on.
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Kernel Trick for Non-Vector Data

* Recent list of types of data where people have defined kernels:

trees (Collins & Dufty, 2001; Kashima & Koyanagi, 2002),
time series (Cuturi, 2011), strings (Lodhi et al., 2002), mix-
ture models, hidden Markov models or linear dynamical
systems (Jebara et al., 2004), sets (Haussler, 1999; Gértner
et al., 2002), fuzzy domains (Guevara et al., 2017), disz‘;’};om‘?gfﬁf
tributions (Hein & Bousquet, 2005; Martins et al., 2009; j::;ﬁf;‘g;};"

Muandet et al., 2011), groups (Cuturi et al., 2005) such as

specific constructions on permutations (Jiao & Vert, 2016),
or graphs (Vishwanathan et al., 2010; Kondor & Pan, 2016).

* Bonus slide overviews a particular “string” kernel.



bonus,‘
Valid Kernels

What kernel functions k(x;,x;) can we use?

Kernel ‘k” must be an inner product in some space:

— There must exist a mapping from the x; to some z; such that k(x;x;) = z'z;.

It can be hard to show that a function satisfies this.

— Infinite-dimensional eigenfunction problem.

But like convex functions, there are some simple rules for
constructing “valid” kernels from other valid kernels (bonus slide).



Kernel Trick for Other Methods

* Besides L2-regularized least squares, when can we use kernels?

— We can compute Euclidean distance with kernels:
2 T — T ‘
“2; = 2)-“ = 2i'2i =1z z t (()(,)x) QF(X,)y> k(x ,y)

— All of our distance-based methods have kernel versions:
e Kernel k-nearest neighbours.
e Kernel k-means.
* Kernel density-based clustering.
e Kernel hierarchical clustering.
* Kernel distance-based outlier detection.
e Kernel “Amazon Product Recommendation”.
e Kernel PCA (we will talk about PCA next week)
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Kernel Trick for Other Methods -

* Besides L2-regularized least squares, when can we use kernels?

— “Representer theorems” (bonus slide) have shown that
any L2-regularized linear model can be kernelized:
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Kernel Trick for Other Methods -

* Besides L2-regularized least squares, when can we use kernels?

— “Representer theorems” (bonus slide) have shown that
any L2-regularized linear model can be kernelized:
L2-regularized robust regression.

L2-regularized brittle regression.

L2-regularized logistic regression.

L2-regularized hinge loss (SVMs).

W/ Th « ]Daf'f rcular )M///M@n "/a?'/on y
c an ch'vu‘e ‘[’Dfedi(‘/io,,\ (OS\/

{from  0(nd1)  To O(ﬁth)
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support vectors.
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Logistic Regression with Kernels

Linear Logistic Regression Kernel-Linear Logistic Regression

"{. "
Vsina  linear Kewmel
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Summary

* High-dimensional bases allows us to separate non-separable data.
 “Other” normal equations are faster when n < d.

* Kernel trick allows us to use high-dimensional bases efficiently.
— Write model to only depend on inner products between input vectors.

y k(K‘*’M?"

t’(n Mm‘rj,( %/27 COW}am;r\q inper ﬂ"“"’bd L—» n*n W\ﬂ'h"”‘ ZZ (,om‘}qmmg nNner &DJU\LB Lc?’we!/\

belwesn test Qxaw'r'f) and f—mmn) ex,,m’/{5 all Jfrmm’k, é’)famf/ef

* Kernels let us use similarity between objects (data points), rather than features.
— Allows some exponential- or infinite-sized feature sets.
— Applies to distance-based and linear models with L2-regularization.

e Nexttime:
— How do we train on all of Gmail?
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Feature Selection Hierarchy

* Consider a linear models with higher-order termes,

A
y'. < Wb 1 W, "u" v, ’(34 + "’3 X‘S & lvu/(;,f;z t W:; X, Xis-“‘l@xiz Xis + "V,B(n’q Xa;

* The number of higher-order terms may be too large.
— Can’t even compute them all.
— We need to somehow decide which terms we’ll even consider.

* Consider the following hierarchical constraint:

— You only allow wy, # 0 if w; # 0 and w, # 0.
— “Only consider feature interaction if you are using both features already.”



. . . bOV\MS,(
Hierarchical Forward Selection

* Hierarchical Forward Selection:
— Usual forward selection, but consider interaction terms obeying hierarchy.
— Only consider wy, # 0 once w; # 0 and w, # 0.
— Only allow wy,5 # 0 once wy, # 0 and w5 # 0 and w,5 # 0.
— Only allow wy,5, # 0 once all three-way interactions are present.
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Fig 9: Power set of the set {1,..., 4}: in blue, an authorized set of selected subsets.

In red, an example of a group used within the norm (a subset and all of its
descendants in the DAG).
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Bonus Slide: Equivalent Form of Ridge Regression

Note that X and Y are the same on the left and right side, so we only need to show that
(XEX EAD XS wmi XXX e XIrE, (1)
A version of the matrix inversion lemma (Equation 4.107 in MLAPP) is
(E-FH™'G)"'FH™'=E~'F(H-GE™'F)".

Since matrix addition is commutative and multiplying by the identity matrix does nothing, we can re-write
the left side of (1) as

(XTXHADXT = M+ XTX)XT = A1+ XTIX) I XY = AMI-XT(-DX) 1 XT = - (M-XT(-DX) 2 XT(-1)

Now apply the matrix inversion with £ = X (so E~' = (3) 1), F= X", H = —I (so H™' = —I too), and
G=X:

—(M = XT(-DX)2XT(-I) = —(%)IXT(—I = (%) 5 & e

Now use that (1/a)A~"' = (aA)™!, to push the (=1/)) inside the sum as —),

1 1

AN XT(-[ =X ( ,\) XT)1 = XT(M + XXT)™! = XT(XXT + AI)™L.

> |



bon U\S_(

/—\

Why is inner product a similarity?

* |t seems weird to think of the inner-product as a similarity.
* But consider this decomposition of squared Euclidean distance:

(

Ll ;112 = £ el = x g+ 1y 02

* If all training examples have the same norm, then minimizing Euclidean
distance is equivalent to maximizing inner product.

— So “high similarity” according to inner product is like “small Euclidean distance”.

— The only difference is that the inner product is biased by the norms of the
training examples.

— Some people explicitly normalize the x, by setting x, = (1/] | x;| | )x,, so that inner
products act like the negation of Euclidean distances.
* E.g., Amazon product recommendation.



(
Guasian-RBF Kernels bonus!

@ The most common kernel is the Gaussian-RBF (or ‘squared exponential’) kernel,

2
s — Lq
k(iﬂi,%‘) = CXP (—” z 72 J” ) '

@ What function ¢(x) would lead to this as the inner-product?
o To simplify, assume d =1 and 0 =1,

k(zi,x;) = exp(—z; + 2z;x; — .Ij)

= exp(—x7) exp(2T;z;) exp(—a:?),
so we need ¢(z;) = exp(—z?)z; where z;2; = exp(2z;x;).
o For this to work for all ; and z;, z; must be infinite-dimensional.
o |If we use that

=, 2Fwias
exp(2zix;) = Z T
k=0 '

then we obtain

d(x;) = exp(— [ \/;SEz \/3—? \/%—713? . ] ,



B question stop following US (

— |

Why RBF-kernel not the same as RBF-basis?

| do not quite understand the two statements in red box? | think with k as defined that way, it is just the g(||z; — x;l|)
as we saw in the last lecture of RBF basis? Why they are not equivalent? What does "equivalent” here mean?

Also, why now "we are using them as inner product"? |s it because we now regard k(xi, wj) as the inner product of z;
and z;, which are some magical transformation of z; and x;? (Like k(z;, z;) = (1 + :c,LT:rj)p is the inner product of z;
and z;, which are polynomial transformation of x; and x;)?

",3, Chenliang Zhou ® s months ago Oh so is my following reasoning correct?:

VA
Let Z and Z be as defined in lecture 22a.

In Gaussian RBF basis, § = Z(ZTZ + M) 1 ZTy = ZZT(ZZT + \I)1y.

In Gaussian RBF kernel, we have y = I~{(K + M)~y where where K and K are those 2

horrible matrices for Gaussian RBF kernels. Since they are the same formula, K = Z and K = Z SO
§ = Z(Z+ M) y.

So Gaussian RBF basis and Gaussian RBF kernel are different because in general,

ZZT(ZZT + XI)~!(for G-RBF basis) # Z(Z + \I)~!(for G-RBF kernel).
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A String Kernel

e Aclassic “string kernel”:
— We want to compute k(“cat”, “cart”).

(7 () (

— Find all common subsequences: ‘c’, ‘@’, ‘t/, ‘ca’, ‘at’, ‘ct’, ‘cat’.

— Weight them by total length in original strings:
e ‘¢’ haslength (1,1), ‘ca’ has lengths (2,2), ‘ct’ has lengths (3,4), and so on.
— Add up the weighted lengths of common subsequences to get a similarity:

k( “cat”,“cart') _ ’71’71 +,Y1,Y1 ‘|"Yl’)/1 +’72’}’2+’Y2’73+73’74+’73'Y4,
M e e N e N
© ‘a’ it ‘ca’ ‘at’ ‘ct’ ‘cat’

where y is a hyper-parameter controlling influence of length.

* Corresponds to exponential feature set (counts/lengths of all subsequences).
— But kernel can be computed in polynomial time by dynamic programming.

* Many variations exist.



Constructing Valid Kernels

bon U\S.(

—

o If ki(wi,z;) and ka(x;, x;) are valid kernels, then the following are valid kernels:

k1(o(x;), o(x5)).

()’k‘l(’l‘z,’I‘]) -+ ,Bk‘g(’l‘z,’l’]) for « = 0 and [3 > 0.

k‘l (J,z. JLJ)kQ(.Lz. J;J)
d(xi)k1 (s, ;) Pp(2;).

exp(k1 (s, 2;)).

e Example: Gaussian-RBF kernel:

T —

N

s — =

E211

( O‘z
= exp

2

0'2

>

b(z:)

N

)

) exp

A full proof of all of these (the way to show exp is neat!):
https://stats.stackexchange.com/a/150964/9964

(

2
T

)

\ % vand)

exp(valld)



https://stats.stackexchange.com/a/150964/9964

Representer Theorem bonus!

Consider linear model differentiable with losses f; and L2-regularization,

n
. A
argmin > fi(w”z) + 5 [lw]?
weRd i—1

Setting the gradient equal to zero we get
n
0= Z flwlzy)z; + Iw.
i=1

So any solution w* can written as a linear combination of features z;,

n n

1
w* = Y ; fi((w*) i)z = ; 2iTi
= X1,

This is called a representer theorem (true under much more general conditions).



bon U\S_(

Kernel Trick for Other Methods -

* Besides L2-regularized least squares, when can we use kernels?

— “Representer theorems” have shown that
any L2-regularized linear model can be kernelized.

— Linear models without regularization fit with gradient descent.

* If you starting at v=0 or with any other value in span of rows of Z’.

Tlerations of (WJWL desceal On F(Zv> can be wrillen as \/:lek
Wk'zc[n ’et US fb“‘f’afaMf,TQ/ize as ?(ZZTM)
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