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Last Time: L1-Regularization

 We discussed L1-regularization:

Flu)=4 o= 2 + Ml

— Also known as “LASSO” and “basis pursuit denoising”.
— Regularizes ‘w’ so we decrease our test error (like L2-regularization).
— Yields sparse ‘W’ so it selects features (like LO-regularization).

* Properties:

— It’s convex and fast to minimize (with “proximal-gradient” methods).
— Solution is not unique (sometimes people do L2- and L1-regularization).
— Usually includes “correct” variables but tends to yield false positives.



Ensemble Feature Selection

e We can also use ensemble methods for feature selection.

— Usually designed to reduce false positives or reduce false negatives.

* |n this case of L1-regularization, we want to reduce false positives.

— Unlike LO-regularization, the non-zero w; are still “shrunk”.

* “Irrelevant” variables can be included before “relevant” W, reach best value.

* A bootstrap approach to reducing false positives:
— Apply the method to bootstrap samples of the training data.
— Only take the features selected in all bootstrap samples.
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 Example: LASSO on Bootstrapped samples [Bolasso: Model Consistent Lasso
Estimation through the Bootstrap, F. Bach 2008].

— Reduces false positives.

— It’s possible to show it recovers “correct” variables.
* Can replace “intersection” with “selected frequency” if has false negatives too.



(pause)



Motivation: Identifying Important E-mails

* How can we automatically identify ‘important’ e-mails?

| » Mark .. Issam, Ricky (10) Inbox A2, tutorials, marking = 10:41 am
COMPOSE
Holger, Jim (2) lists Intro to Computer Science 10:20 am
Inbox (3) = <oz
» Issam Laradji Inbox Convergence rates forcu & 9:49 am
Starred
<!mpo?nt > » sameh, Mark, sameh (3) Inbox Graduation Project Dema = 8:01 am
IS_;\en‘t. ?4'\ » Mark .. sara, Sara (11) Label propagation = 7:57am

e A binary classification problem (“important” vs. “not important”).

— Labels are approximated by whether you took an “action” based on mail.
— High-dimensional feature set (that we’ll discuss later).

* Gmail uses regression for this binary classification problem.



Binary Classification Using Regression?

 Can we apply linear models for binary classification?

— Set y, = +1 for one class (“important”).

— Set y, = -1 for the other class (“not important”).
* At training time, fit a linear regression model:

)’. = W, x,, twy Xy e twyxy
—_ W y'
* The model will try to make w'x. = +1 for “important” e-mails,
and w'x. = -1 for “not important” e-mails.



Binary Classification Using Regression?

 Can we apply linear models for binary classification?
— Set y, = +1 for one class (“important”).
— Set y, = -1 for the other class (“not important”).

* Linear model gives real numbers like 0.9, -1.1, and so on.

* So to predict, we look at whether w'x; is closer to +1 or -1.
— If w'x; = 0.9, predict y, = +1.
— If wix; =-1.1, predict y, = -1.
— If w'x; = 0.1, predict y, = +1.
— If w'x; =-100, predict y, = -1.
— We write this operation (rounding to +1 or -1) as y; = sign(wx;).



Decision Boundary in 1D
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Decision Boundary in 1D
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* We can interpret ‘w’ as a hyperplane separating x into sets:
— Set where w'x; > 0 and set where w'x; < 0.



Decision Boundary in 2D

decision tree KNN linear classifier

— The boundary is at y.=0.
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Should we use least squares for classification?
Consider training by minimizing squared error with y, that are +1 or -1:

{‘(w) 7-_12“)(\,\/"/)‘2 ’:},
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If we predict w'x, = +0.9 and y; = +1, error is small: (0.9 — 1)2 = 0.01.
If we predict w'x, =-0.8 and y, = +1, error is bigger: (-0.8 — 1) = 3.24.
If we predict w'x, = +100 and y; = +1, error is huge: (100 — 1)? = 9801.

— But it shouldn’t be, the prediction is correct.

Least squares penalized for being “too right”.
— 4100 has the right sign, so the error should not be large.



Should we use least squares for classification?

* Least squares can behave weirdly when applied to classification:
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— Make sure you understand why the green line achieves O training error.



“0-1 Loss” Function: Minimizing Classification Errors

e Could we instead minimize number of classification errors?

— This is called the 0-1 loss function:
* You either get the classification wrong (1) or right (0).

— We can write using the LO-norm as | | y-y/| |,.
* Unlike regression, in classification it’s reasonable that y,=y, (it’s either +1 or -1).

* Important special case: “linearly separable” data.

— Classes can be “separated” by a hyper-plane.
— So a perfect linear classifier exists.




Perceptron Algorithm for Linearly-Separable Data

One of the first “learning” algorithms was the “perceptron” (1957).
— Searches for a ‘w’ such that sign(w'x;) =y, for all i.

Perceptron algorithm:
— Start with w® = 0.

— Go through examples in any order until you make a mistake predicting y..
e Set wtl=w!+yx,.
— Keep going through examples until you make no errors on training data.

If a perfect classifier exists, this algorithm finds one in finite number of steps.

Intuition:
— Consider a case where w'x; < 0 but y, = +1.
— In this case the update “adds more of x, to w” so that w'x; is larger.

(Wfﬂ)_r)(,- = (\Nt + )"x,- = @Mtﬁx_ + XiTY.‘ = (ol P""’I"(ﬁ"") + "X.'//'?

— If y; =-1, you would be subtracting the squared norm.



https://en.wikipedia.org/wiki/Perceptron
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The Mark | Perceptron machine was o]
the first implementation of the
perceptron algorithm. The machine was
connected to a camera that used
20%x20 cadmium sulfide photocells to
produce a 400-pixel image. The main
visible feature is a patchboard that
allowed experimentation with different
combinations of input features. To the
right of that are arrays of
potentiometers that implemented the
adaptive weights.#?"?



Geometry of why we want the 0-1 loss
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Wait, what does that picture mean?

* We are now plotting the loss vs. the predicted w'x..

— “Loss space”, which is different than parameter space or data space.
* Close (but not quite same) as when we were plotting losses for robust regression

* We're plotting the individual loss for a particular training example.
— In the figure the label is y,= -1 (so loss is centered at -1).

* It will be centered at +1 when y,= +1.

— The objective in least squares regression is a sum of ‘n’ of these losses:

ARV R VR vA




Geometry of why we want the 0-1 loss
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Geometry of why we want the 0-1 loss
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Geometry of why we want the 0-1 loss
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0-1 Loss Function

* Unfortunately the 0-1 loss is non-convex in ‘w’.

— It’s easy to minimize if a perfect classifier exists (perceptron).
— Otherwise, finding the ‘w’ minimizing 0-1 loss is (NP-)hard.

— Gradient is zero everywhere: don’t even know “which way to go”.

— NOT the same type of problem we had with using the squared loss.

 We can minimize the squared error, but it might give a bad model for classification.

* Motivates convex approximations to 0-1 loss...



A Convex Approximation to 0-1 Loss

If y. = +1, we get the label right if w'x. > 0.
If y. = -1, we get the label right if w'x. < 0, or equivalently —w'x. > 0.
So “classifying ‘i’ correctly” is equivalent to having y.w'x. > 0.

One possible convex approximation to 0-1 loss:

— Minimize how much this constraint is violated.
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A Convex Approximation to 0-1 Loss
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A (Bad) Convex Approximation to 0-1 Loss

Our convex approximation of the error for one example is:
may 0 = yiw'x, ¢
We could train by minimizing sum over all examples:
A
1(w)= Zmai0,~y w'y §
1=

But this has a degenerate solution:

— We have f(0) = 0, and this is the lowest possible value of ‘.

There are two standard fixes: hinge loss and logistic loss.



Hinge Loss

We saw that we classify examples ‘i’ correctly if y;w'x; > 0.
— Our convex approximation is the amount this inequality is violated.

Consider replacing yw'x; > 0 with y,w'x; > 1.
(the “1” is arbitrary: we could make | |w| | bigger/smaller to use any positive constant)

The violation of this constraint is now given by:

T
Max {07 | "y,wyif
This is the called hinge loss.

— It’s convex: max(constant, linear).
— It's not degenerate: w=0 now gives an error of 1 instead of O.



Hinge Loss: Convex Approximation to O-1 Loss
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Hinge Loss: Convex Approximation to O-1 Loss
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Hinge Loss

* Hinge loss for all ‘n’ training examples is given by:
n -
’F(W>: 2 ma)(207 | N)/i w'x,f
j=a

— Convex upper bound on 0-1 loss.

* If the hinge loss is 18.3, then number of training errors is at most 18.
* So minimizing hinge loss indirectly tries to minimize training error.
* Like perceptron, finds a perfect linear classifier if one exists.

e Support vector machine (SVM) is hinge loss with L2-regularization.
n -
f(w)’z may207 | Y w X;§ :"5“\4/”2
j=h

— There exist specialized optimization algorithm for this problems.
— SVMs can also be viewed as “maximizing the margin” (later).



Summary

Ensemble feature selection reduces false positives or negatives.

Binary classification using regression:

— Encode using y; in {-1,1}.

— Use sign(w™x:) as prediction.

— “Linear classifier” (a hyperplane splitting the space in half).

Least squares is a weird error for classification.

Perceptron algorithm: finds a perfect classifier (if one exists).
0-1 loss is the ideal loss, but is non-smooth and non-convex.

Hinge loss is a convex upper bound on 0-1 loss.
— SVMs add L2-regularization.

Next time: one of the best “out of the box” classifiers.



bonus,(
L1-Regularization as a Feature Selection Method

* Advantages:

— Deals with conditional independence (if linear).

— Sort of deals with collinearity:
* Picks at least one of “mom” and “mom_again”.

— Very fast with specialized algorithms.

* Disadvantages:
— Tends to give false positives (selects too many variables).

* Neither good nor bad:
— Does not take small effects.
— Says “sex” is relevant if we know “baby”.

— Good for prediction if we want fast training and don’t care about having
some irrelevant variables included.



bon U\S_(

“Elastic Net”: L2- and L1-Regularization
* To address non-uniqueness, sometimes use both L2- and L1-:

{100 =1 lxu=y I+ 4 1+ %

e Called “elastic net” regularization.
— Solution is sparse and unique.
— Slightly better with feature dependence:

e Selects both “mom” and “mom_again”.

* Optimization is easier, though still non-differentiable.



Ioonus,(
L1-Regularization Debiasing and Filtering

 To remove false positives, some authors add a debiasing step:
— Fit ‘w’ using L1-regularization.
— Grab the non-zero values of ‘w’ as the “relevant” variables.
— Re-fit relevant ‘w’ using least squares or L2-regularized least squares.

* Arelated use of L1-regularization is as a filtering method:
— Fit ‘w’ using L1-regularization.
— Grab the non-zero values of ‘w’ as the “relevant” variables.
— Run standard (slow) variable selection restricted to relevant variables.

* Forward selection, exhaustive search, stochastic local search, etc.



. bonus,(
Non-Convex Regularizers

Regularizing |w;|* selects all features.
Regularizing |w;| selects fewer, but still has many false positives.

What if we regularize |w;|Y/2 instead? 2
. J

B

Minimizing this objective would lead to fewer false positives.
— Less need for debiasing, but it’s not convex and hard to minimize.

There are many non-convex regularizers with similar properties.
— L1-regularization is (basically) the “most sparse” convex regularizer.
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 What went wrong?

Can we just use least squares?? -
— “Good” errors vs. “bad” errors.
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Can we just use least squares??

* What went wrong?

— “Good” errors vs. “bad” errors.
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bon U\S_(
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Online Classification with Perceptron

e Perceptron for online linear binary classification [Rosenblatt, 1957]
— Start with w, = 0.
— At time ‘t” we receive features x.
— We predict ¥, = sign(w,'x,).
— If y, #vy,, then set w,,; = w, + yx..
* Otherwise, set w,; = W,.

(Slides are old so above I’'m using subscripts of ‘t” instead of superscripts.)

* Perceptron mistake bound [Novikoff, 1962]:

— Assume data is linearly-separable with a “margin”: .

* There exists w* with | [w*||=1 such that sign(x,"'w*) = sign(y,) for all ‘t’ and |x'w*| > y.>0
— Then the number of total mistakes is bounded.

* No requirement that data is IID.



Ioonus,(
Perceptron Mistake Bound

* Let’s normalize each x, so that | |x,| | = 1.
— Length doesn’t change label.

* Whenever we make a mistake, we have sign(y,) # sign(w,'x,) and

2 2
|we1]]” = [Jwe + yae |

lwe|* + 2 g ; +1

<0
< Jlwe)® +1
< |lwer ) + 2
< |lwe—a]|* + 3.

* So after 'k’ errors we have | |w,]||% < k.



bonus,‘
Perceptron Mistake Bound

* Let’s consider a solution w*, so sign(y,) = sign(x,'w*).
— And let’s choose a w* with | |w*|| =1,
e Whenever we make a mistake, we have:

lwega |l = [Jwea|[[[wa|

T

2 Wiy Wy
T
= (wy + Y)W

T T
= W; Wy + YTy Wk

— wfw* + |:13fw*\
= thw* + .
— Note: w,'wx > 0 by induction (starts at 0, then at least as big as old value plus y).
* So after ‘k” mistakes we have | |w,| | = yk.



bonus,‘
Perceptron Mistake Bound

* So our two bounds are | |w,| | < sqgrt(k) and | [w,| ]| = yk.

* This gives yk < sqrt(k), or a maximum of 1/y? mistakes.
— Note that y > 0 by assumption and is upper-bounded by one by | |x]| | < 1.

— After this ‘k’, under our assumptions
we’re guaranteed to have a perfect classifier.



. bonu\S,(
Hinge-Loss Perceptron

* A perceptron-like algorithm for minimizing the hinge loss:

— Start with any w®.
— Go through examples until you find an example with yw'x > 1.

S 1 ot 1=yiwH Ty - - :
* Setwt=wh+ — (minimum change to w, that satisfies constraint).
il

* |If a classifier with hinge loss of 0 exists, this converges to one.

— Looks like perceptron, but with a step size added to update (green term).

* Get perceptron algorithm if you replace green term with ‘1’

— A special case of the “projection onto convex sets” (POCS) algorithm.



https://en.wikipedia.org/wiki/Projections_onto_convex_sets

