
CPSC 340:
Machine Learning and Data Mining

Linear Classifiers
Spring 2022 (2021W2)

Admin

• A4 released on Feb 25 (Fri); Due Friday Mar 11

Last Time: L1-Regularization
• We discussed L1-regularization:

– Also known as “LASSO” and “basis pursuit denoising”.
– Regularizes ‘w’ so we decrease our test error (like L2-regularization).
– Yields sparse ‘w’ so it selects features (like L0-regularization).

• Properties:
– It’s convex and fast to minimize (with “proximal-gradient” methods).
– Solution is not unique (sometimes people do L2- and L1-regularization).
– Usually includes “correct” variables but tends to yield false positives.

Ensemble Feature Selection
• We can also use ensemble methods for feature selection.
– Usually designed to reduce false positives or reduce false negatives.

• In this case of L1-regularization, we want to reduce false positives.
– Unlike L0-regularization, the non-zero wj are still “shrunk”.

• “Irrelevant” variables can be included before “relevant” wj reach best value.

• A bootstrap approach to reducing false positives:
– Apply the method to bootstrap samples of the training data.
– Only take the features selected in all bootstrap samples.

Ensemble Feature Selection

• Example: LASSO on Bootstrapped samples [Bolasso: Model Consistent Lasso
Estimation through the Bootstrap, F. Bach 2008].
– Reduces false positives.
– It’s possible to show it recovers “correct” variables.

• Can replace “intersection” with “selected frequency” if has false negatives too.

(pause)

Motivation: Identifying Important E-mails
• How can we automatically identify ‘important’ e-mails?

• A binary classification problem (“important” vs. “not important”).
– Labels are approximated by whether you took an “action” based on mail.
– High-dimensional feature set (that we’ll discuss later).

• Gmail uses regression for this binary classification problem.

Binary Classification Using Regression?
• Can we apply linear models for binary classification?
– Set yi = +1 for one class (“important”).
– Set yi = -1 for the other class (“not important”).

• At training time, fit a linear regression model:

• The model will try to make wTxi = +1 for “important” e-mails,
and wTxi = -1 for “not important” e-mails.

Binary Classification Using Regression?
• Can we apply linear models for binary classification?
– Set yi = +1 for one class (“important”).
– Set yi = -1 for the other class (“not important”).

• Linear model gives real numbers like 0.9, -1.1, and so on.
• So to predict, we look at whether wTxi is closer to +1 or -1.
– If wTxi = 0.9, predict !𝑦i = +1.
– If wTxi = -1.1, predict !𝑦i = -1.
– If wTxi = 0.1, predict !𝑦i = +1.
– If wTxi = -100, predict !𝑦i = -1.
– We write this operation (rounding to +1 or -1) as !𝑦i = sign(wTxi).

Decision Boundary in 1D

• We can interpret ‘w’ as a hyperplane separating x into sets:
– Set where wTxi > 0 and set where wTxi < 0.

Decision Boundary in 1D

Decision Boundary in 2D

decision tree KNN linear classifier

• Linear classifier would be a !𝑦i= wTxi function coming out of screen:
– The boundary is at !𝑦i=0.

Should we use least squares for classification?
• Consider training by minimizing squared error with yi that are +1 or -1:

• If we predict wTxi = +0.9 and yi = +1, error is small: (0.9 – 1)2 = 0.01.
• If we predict wTxi = -0.8 and yi = +1, error is bigger: (-0.8 – 1)2 = 3.24.
• If we predict wTxi = +100 and yi = +1, error is huge: (100 – 1)2 = 9801.
– But it shouldn’t be, the prediction is correct.

• Least squares penalized for being “too right”.
– +100 has the right sign, so the error should not be large.

Should we use least squares for classification?
• Least squares can behave weirdly when applied to classification:

• Why? Squared error of green line is huge!
– Make sure you understand why the green line achieves 0 training error.

“0-1 Loss” Function: Minimizing Classification Errors

• Could we instead minimize number of classification errors?
– This is called the 0-1 loss function:

• You either get the classification wrong (1) or right (0).

– We can write using the L0-norm as || !𝑦– y||0.
• Unlike regression, in classification it’s reasonable that !𝑦𝑖= yi (it’s either +1 or -1).

• Important special case: “linearly separable” data.
– Classes can be “separated” by a hyper-plane.
– So a perfect linear classifier exists.

Perceptron Algorithm for Linearly-Separable Data
• One of the first “learning” algorithms was the “perceptron” (1957).

– Searches for a ‘w’ such that sign(wTxi) = yi for all i.

• Perceptron algorithm:
– Start with w0 = 0.
– Go through examples in any order until you make a mistake predicting yi.

• Set wt+1 = wt + yixi.
– Keep going through examples until you make no errors on training data.

• If a perfect classifier exists, this algorithm finds one in finite number of steps.
• Intuition:

– Consider a case where wTxi < 0 but yi = +1.
– In this case the update “adds more of xi to w” so that wTxi is larger.

– If yi = -1, you would be subtracting the squared norm.

https://en.wikipedia.org/wiki/Perceptron

Geometry of why we want the 0-1 loss

Wait, what does that picture mean?
• We are now plotting the loss vs. the predicted w⊤xi.
– “Loss space”, which is different than parameter space or data space.

• Close (but not quite same) as when we were plotting losses for robust regression

• We're plotting the individual loss for a particular training example.
– In the figure the label is yi = −1 (so loss is centered at -1).

• It will be centered at +1 when yi = +1.

– The objective in least squares regression is a sum of ‘n’ of these losses:

Geometry of why we want the 0-1 loss

Geometry of why we want the 0-1 loss

Geometry of why we want the 0-1 loss

0-1 Loss Function
• Unfortunately the 0-1 loss is non-convex in ‘w’.
– It’s easy to minimize if a perfect classifier exists (perceptron).
– Otherwise, finding the ‘w’ minimizing 0-1 loss is (NP-)hard.

– Gradient is zero everywhere: don’t even know “which way to go”.

– NOT the same type of problem we had with using the squared loss.
• We can minimize the squared error, but it might give a bad model for classification.

• Motivates convex approximations to 0-1 loss…

A Convex Approximation to 0-1 Loss
• If yi = +1, we get the label right if wTxi > 0.
• If yi = -1, we get the label right if wTxi < 0, or equivalently –wTxi > 0.
• So “classifying ‘i’ correctly” is equivalent to having yiwTxi > 0.

• One possible convex approximation to 0-1 loss:
– Minimize how much this constraint is violated.

A Convex Approximation to 0-1 Loss

25

A (Bad) Convex Approximation to 0-1 Loss
• Our convex approximation of the error for one example is:

• We could train by minimizing sum over all examples:

• But this has a degenerate solution:
– We have f(0) = 0, and this is the lowest possible value of ‘f’.

• There are two standard fixes: hinge loss and logistic loss.

Hinge Loss
• We saw that we classify examples ‘i’ correctly if yiwTxi > 0.
– Our convex approximation is the amount this inequality is violated.

• Consider replacing yiwTxi > 0 with yiwTxi ≥ 1.
(the “1” is arbitrary: we could make ||w|| bigger/smaller to use any positive constant)

• The violation of this constraint is now given by:

• This is the called hinge loss.
– It’s convex: max(constant, linear).
– It’s not degenerate: w=0 now gives an error of 1 instead of 0.

Hinge Loss: Convex Approximation to 0-1 Loss

28

Hinge Loss: Convex Approximation to 0-1 Loss

29

Hinge Loss
• Hinge loss for all ‘n’ training examples is given by:

– Convex upper bound on 0-1 loss.
• If the hinge loss is 18.3, then number of training errors is at most 18.
• So minimizing hinge loss indirectly tries to minimize training error.
• Like perceptron, finds a perfect linear classifier if one exists.

• Support vector machine (SVM) is hinge loss with L2-regularization.

– There exist specialized optimization algorithm for this problems.
– SVMs can also be viewed as “maximizing the margin” (later).

Summary
• Ensemble feature selection reduces false positives or negatives.
• Binary classification using regression:
– Encode using yi in {-1,1}.
– Use sign(wTxi) as prediction.
– “Linear classifier” (a hyperplane splitting the space in half).

• Least squares is a weird error for classification.
• Perceptron algorithm: finds a perfect classifier (if one exists).
• 0-1 loss is the ideal loss, but is non-smooth and non-convex.
• Hinge loss is a convex upper bound on 0-1 loss.
– SVMs add L2-regularization.

• Next time: one of the best “out of the box” classifiers. 31

L1-Regularization as a Feature Selection Method
• Advantages:
– Deals with conditional independence (if linear).
– Sort of deals with collinearity:

• Picks at least one of “mom” and “mom_again”.
– Very fast with specialized algorithms.

• Disadvantages:
– Tends to give false positives (selects too many variables).

• Neither good nor bad:
– Does not take small effects.
– Says “sex” is relevant if we know “baby”.
– Good for prediction if we want fast training and don’t care about having

some irrelevant variables included.

“Elastic Net”: L2- and L1-Regularization
• To address non-uniqueness, sometimes use both L2- and L1-:

• Called “elastic net” regularization.
– Solution is sparse and unique.
– Slightly better with feature dependence:

• Selects both “mom” and “mom_again”.

• Optimization is easier, though still non-differentiable.

L1-Regularization Debiasing and Filtering
• To remove false positives, some authors add a debiasing step:
– Fit ‘w’ using L1-regularization.
– Grab the non-zero values of ‘w’ as the “relevant” variables.
– Re-fit relevant ‘w’ using least squares or L2-regularized least squares.

• A related use of L1-regularization is as a filtering method:
– Fit ‘w’ using L1-regularization.
– Grab the non-zero values of ‘w’ as the “relevant” variables.
– Run standard (slow) variable selection restricted to relevant variables.

• Forward selection, exhaustive search, stochastic local search, etc.

Non-Convex Regularizers
• Regularizing |wj|2 selects all features.
• Regularizing |wj| selects fewer, but still has many false positives.
• What if we regularize |wj|1/2 instead?

• Minimizing this objective would lead to fewer false positives.
– Less need for debiasing, but it’s not convex and hard to minimize.

• There are many non-convex regularizers with similar properties.
– L1-regularization is (basically) the “most sparse” convex regularizer.

Can we just use least squares??
• What went wrong?
– “Good” errors vs. “bad” errors.

Can we just use least squares??
• What went wrong?
– “Good” errors vs. “bad” errors.

Online Classification with Perceptron
• Perceptron for online linear binary classification [Rosenblatt, 1957]
– Start with w0 = 0.
– At time ‘t’ we receive features xt.
– We predict !𝑦t = sign(wt

Txt).
– If !𝑦t ≠ yt, then set wt+1 = wt + ytxt.

• Otherwise, set wt+1 = wt.

(Slides are old so above I’m using subscripts of ‘t’ instead of superscripts.)

• Perceptron mistake bound [Novikoff, 1962]:
– Assume data is linearly-separable with a “margin”:

• There exists w* with ||w*||=1 such that sign(xtTw*) = sign(yt) for all ‘t’ and |xTw*| ≥ γ.
– Then the number of total mistakes is bounded.

• No requirement that data is IID.

Perceptron Mistake Bound
• Let’s normalize each xt so that ||xt|| = 1.
– Length doesn’t change label.

• Whenever we make a mistake, we have sign(yt) ≠ sign(wt
Txt) and

• So after ‘k’ errors we have ||wt||2 ≤ k.

Perceptron Mistake Bound
• Let’s consider a solution w*, so sign(yt) = sign(xt

Tw*).
– And let’s choose a w* with ||w*|| = 1,

• Whenever we make a mistake, we have:

– Note: wt
Tw* ≥ 0 by induction (starts at 0, then at least as big as old value plus γ).

• So after ‘k’ mistakes we have ||wt|| ≥ γk.

Perceptron Mistake Bound
• So our two bounds are ||wt|| ≤ sqrt(k) and ||wt|| ≥ γk.

• This gives γk ≤ sqrt(k), or a maximum of 1/γ2 mistakes.
– Note that γ > 0 by assumption and is upper-bounded by one by ||x|| ≤ 1.
– After this ‘k’, under our assumptions

we’re guaranteed to have a perfect classifier.

Hinge-Loss Perceptron
• A perceptron-like algorithm for minimizing the hinge loss:
– Start with any w0.
– Go through examples until you find an example with yiwTxi > 1.

• Set wt+1 = wt + !"#!(%
")#'!

'!
#'!

yixi (minimum change to wt that satisfies constraint).

• If a classifier with hinge loss of 0 exists, this converges to one.
– Looks like perceptron, but with a step size added to update (green term).

• Get perceptron algorithm if you replace green term with ‘1’.

– A special case of the “projection onto convex sets” (POCS) algorithm.

https://en.wikipedia.org/wiki/Projections_onto_convex_sets

