
CPSC 340:
Machine Learning and Data Mining

More Regularization
Spring 2022 (2021W2)

Admin
• Reading week is next week!
– No lectures
– Assignment 4 will be released on Friday (Feb 25). Due on March 11.

Last Time: L2-Regularization
• We discussed regularization:
– Adding a continuous penalty on the model complexity:

– Best parameter λ almost always leads to improved test error.
• L2-regularized least squares is also known as “ridge regression”.
• Can be solved as a linear system like least squares.

– Numerous other benefits:
• Solution is unique, less sensitive to data, gradient descent converges faster.

Parametric vs. Non-Parametric Transforms
• We’ve been using linear models with polynomial bases:

• But polynomials are not the only possible bases:
– Exponentials, logarithms, trigonometric functions, etc.
– The right basis will vastly improve performance.
– If we use the wrong basis, our accuracy is limited even with lots of data.
– But the right basis may not be obvious.

Parametric vs. Non-Parametric Transforms
• We’ve been using linear models with polynomial bases:

• Alternative is non-parametric bases:
– Size of basis (number of features) grows with ‘n’.
– Model gets more complicated as you get more data.
– Can model complicated functions where you don’t know the right basis.

• With enough data.

– Classic example is “Gaussian RBFs” (“Gaussian” == “normal distribution”).

• Gaussian RBFs are universal approximators (on compact subets of ℝd)
– Enough bumps can approximate any continuous function to arbitrary precision.
– Achieve optimal test error as ‘n’ goes to infinity.

Gaussian RBFs: A Sum of “bumps”

Gaussian RBFs: A Sum of “Bumps”
• Polynomial fit:

• Constructing a function from bumps (“smooth histogram”):

Gaussian RBFs: A Sum of “Bumps”
• More-realistic version (green is regression line, red is each basis):

Gaussian RBF Parameters
• Some obvious questions:

1. How many bumps should we use?
2. Where should the bumps be centered?
3. How high should the bumps go?
4. How wide should the bumps be?

• The usual answers:
1. We use ‘n’ bumps (non-parametric basis).
2. Each bump is centered on one training example xi.
3. Fitting regression weights ‘w’ gives us the heights (and signs).
4. The width is a hyper-parameter (narrow bumps == complicated model).

Gaussian RBFs: Formal Details
• What is a radial basis functions (RBFs)?
– A set of non-parametric bases that depend on distances to training points.

– Have ‘n’ features, with feature ‘j’ depending on distance to example ‘j’.
• Typically the feature will decrease as the distance increases:

d

Gaussian RBFs: Formal Details
• What is a radial basis functions (RBFs)?
– Most common choice of ‘g’ is Gaussian RBF:

• Variance σ2 is a hyper-parameter controlling “width”.
– This affects fundamental trade-off (set it using a validation set).

– Why don’t we have 2𝜋𝜎 in the above formula?
• If you don’t regularize it does not matter:

– If ‘v’ is least squares solution with features zi, then (2𝜋𝜎)v is solution with features (1/ 2𝜋𝜎)zi.
– So you get the same predictions (least squares is invariant to scaling of features).

• If you regularize it “sort of” matters:
– It changes the effect of a fixed λ.
– But the regularization path is the same, so if you search for the best λ you get same predictions.

Gaussian RBFs: Formal Details
• What is a radial basis functions (RBFs)?
– The training and testing matrices when using RBFs:

Gaussian RBFs: Pseudo-Code

Non-Parametric Basis: RBFs
• Least squares with Gaussian RBFs for different σ values:

RBFs and Regularization
• Gaussian Radial basis functions (RBFs) predictions:

– Flexible bases that can model any continuous function.
• Quick almost-proof: Z is square, almost always invertible, so least squares gives

Z v = Z (ZT Z)-1 ZT y = Z Z-1 Z-T ZT y = y

– But with ‘n’ data points RBFs have ‘n’ basis functions.

• How do we avoid overfitting with this huge number of features?
– We regularize ‘w’ and use validation error to choose 𝜎 and λ.

RBFs, Regularization, and Validation
• A model that is hard to beat:
– RBF basis with L2-regularization and cross-validation to choose 𝜎 and λ.
– Flexible non-parametric basis, magic of regularization, and tuning for test error.

– Can add bias or linear/poly basis to do better away from data.
– Expensive at test time: need distance to all training examples. 16

RBFs, Regularization, and Validation
• A model that is hard to beat:
– RBF basis with L2-regularization and cross-validation to choose 𝜎 and λ.
– Flexible non-parametric basis, magic of regularization, and tuning for test error!

– Expensive at test time: needs distance to all training examples.

Hyper-Parameter Optimization
• In this setting we have 2 hyper-parameters (𝜎 and λ).
• More complicated models have even more hyper-parameters.
– This makes searching all values expensive (increases over-fitting risk).

• Leads to the problem of hyper-parameter optimization.
– Try to efficiently find “best” hyper-parameters.

• Simplest approaches:
– Exhaustive search: try all combinations among a fixed set of σ and λ values.
– Random search: try random values.

Hyper-Parameter Optimization
• Other common hyper-parameter optimization methods:
– Exhaustive search with pruning:

• If it “looks” like test error is getting worse as you decrease λ, stop decreasing it.

– Coordinate search:
• Optimize one hyper-parameter at a time, keeping the others fixed.
• Repeatedly go through the hyper-parameters

– Stochastic local search:
• Generic global optimization methods (simulated annealing, genetic algorithms, etc.).

– Bayesian optimization (Mike’s PhD research topic):
• Use (e.g.) RBF regression to build model of how hyper-parameters affect validation error.
• Try the best guess based on the model.

(pause)

Previously: Search and Score
• We talked about search and score for feature selection:
– Define a “score” and “search” for features with the best score.

• Usual scores count the number of non-zeroes (“L0-norm”):

• But it’s hard to find the ‘w’ minimizing this objective.
• We discussed forward selection, but requires fitting O(d2) models.

Previously: Search and Score
• What if we want to pick among millions or billions of variables?

• If ‘d’ is large, forward selection is too slow:
– For least squares, need to fit O(d2) models. Imagine d = 10^6.

• The situation is worse if we aren’t using basic least squares:
– With regularization, for every lambda, we need to fit O(d2) models.

L1-Regularization
• Instead of L0- or L2-norm, consider regularizing by the L1-norm:

• Like L2-norm, it’s convex and improves our test error.
• Like L0-norm, it encourages elements of ‘w’ to be exactly zero.

• L1-regularization simultaneously regularizes and selects features.
– Very fast alternative to search and score.
– Sometimes called “LASSO” regularization.

L2-Regularization vs. L1-Regularization
• Regularization path of wj values as ‘λ’ varies:

• L1-Regularization sets values to exactly 0 (next slides explore why).

Regularizers and Sparsity
• L1-regularization gives sparsity but L2-regularization doesn’t.

– But don’t they both shrink variables towards zero?

• What is the penalty for setting wj = 0.00001?

• L0-regularization: penalty of λ.
– A constant penalty for any non-zero value.
– Encourages you to set wj exactly to zero, but otherwise doesn’t care if wj is small or not.

• L2-regularization: penalty of λ(0.00001)^2 = 0.0000000001λ.
– The penalty gets smaller as you get closer to zero.
– The penalty asymptotically vanishes as wj approaches 0 (no incentive for “exact” zeroes).

• L1-regularization: penalty of λ|0.00001| = 0.00001λ.
– The penalty stays is proportional to how far away wj is from zero.
– There is still something to be gained from making a tiny value exactly equal to 0.

Regularizers and Sparsity

Loss plus error usually minimized
at “corners” (sparse points)

Minimizer moved towards 0, but
axis-independently

L2-Regularization vs. L1-Regularization
• L2-Regularization:
– Insensitive to changes in data.
– Decreased variance:

• Lower test error.

– Closed-form solution.
– Solution is unique.
– All ‘wj’ tend to be non-zero.
– Sample complexity (the number

of training examples needed to
learn “well”) grows linearly in
irrelevant features.

• L1-Regularization:
– Insensitive to changes in data.
– Decreased variance:

• Lower test error.

– Requires iterative solver.
– Solution is not unique.
– Many ‘wj’ tend to be zero.
– Sample complexity: grows

logarithmically in number of
irrelevant features.

Paper on this result by Andrew Ng

http://www.andrewng.org/portfolio/feature-selection-l1-vs-l2-regularization-and-rotational-invariance/

L1-Regularization Applications
• Used to give super-resolution in imaging black holes.
– Sparsity arises in a particular basis.

• Another application:
– Use L1-regularization with Gaussian RBFs to reduce prediction time.

https://iopscience.iop.org/article/10.1088/1742-6596/699/1/012006/pdf

L1-loss vs. L1-regularization
• Don’t confuse the L1 loss with L1-regularization!
– L1-loss is robust to outlier data points.

• You can use this instead of removing outliers.

– L1-regularization is robust to irrelevant features.
• You can use this instead of removing features.

• And note that you can be robust to outliers and irrelevant features:

• Can we smooth and use “Huber regularization”?
– Huber regularizer is still robust to irrelevant features.
– But it’s the non-smoothness that sets weights to exactly 0. 29

L*-Regularization
• L0-regularization (AIC, BIC, Mallow’s Cp, Adjusted R2, ANOVA):
– Adds penalty on the number of non-zeros to select features.

• L2-regularization (ridge regression):
– Adding penalty on the L2-norm of ‘w’ to decrease overfitting:

• L1-regularization (LASSO):
– Adding penalty on the L1-norm decreases overfitting and selects features:

L0- vs. L1- vs. L2-Regularization
Sparse ‘w’

(Selects Features)
Speed Unique ‘w’ Coding Effort Irrelevant

Features

L0-Regularization Yes Slow No Few lines Not Sensitive

L1-Regularization Yes* Fast* No 1 line* Not Sensitive

L2-Regularization No Fast Yes 1 line A bit sensitive

• L1-Regularization isn’t as sparse as L0-regularization.
– L1-regularization tends to give more false positives (selects too many).
– And it’s only “fast” and “1 line” with specialized solvers.

• “Elastic net” (L1- and L2-regularization) is sparse, fast, and unique
(under some conditions).
[https://www.stat.cmu.edu/~ryantibs/papers/lassounique.pdf]

• Using L0+L2 does not give a unique solution.

Summary
• Radial basis functions:
– Non-parametric bases that can model any function.

• L1-regularization:
– Simultaneous regularization and feature selection.
– Robust to having lots of irrelevant features.

• Next time: are we really going to use regression for classification?

Regularizers and Sparsity
• L1-regularization gives sparsity but L2-regularization doesn’t.
– But don’t they both shrink variables to zero?

• Consider problem where 3 vectors can get minimum training error:

• Without regularization, we could choose any of these 3.
– They all have same error, so regularization will “break tie”.

• With L0-regularization, we would choose w2:

Regularizers and Sparsity
• L1-regularization gives sparsity but L2-regularization doesn’t.
– But don’t they both shrink variables to zero?

• Consider problem where 3 vectors can get minimum training error:

• With L2-regularization, we would choose w3:

• L2-regularization focuses on decreasing largest (makes wj similar).

Regularizers and Sparsity
• L1-regularization gives sparsity but L2-regularization doesn’t.
– But don’t they both shrink variables to zero?

• Consider problem where 3 vectors can get minimum training error:

• With L1-regularization, we would choose w2:

• L1-regularization focuses on decreasing all wj until they are 0.

Sparsity and Least Squares
• Consider 1D least squares objective:

• This is a convex 1D quadratic function of ‘w’ (i.e., a parabola):

• This variable does not look relevant (minimum is close to 0).
– But for finite ‘n’ the minimum is unlikely to be exactly zero.

Sparsity and L0-Regularization
• Consider 1D L0-regularized least squares objective:

• This is a convex 1D quadratic function but with a discontinuity at 0:

• L0-regularized minimum is often exactly at the ‘discontinuity’ at 0:
– Sets the feature to exactly 0 (does feature selection), but is non-convex.

Sparsity and L2-Regularization
• Consider 1D L2-regularized least squares objective:

• This is a convex 1D quadratic function of ‘w’ (i.e., a parabola):

• L2-regularization moves it closer to zero, but not all the way to zero.
– It doesn’t do feature selection (“penalty goes to 0 as slope goes to 0”).

Sparsity and L1-Regularization
• Consider 1D L1-regularized least squares objective:

• This is a convex piecwise-quadratic function of ‘w’ with ‘kink’ at 0:

• L1-regularization tends to set variables to exactly 0 (feature selection).
– Penalty on slope is 𝜆 even if you are close to zero.
– Big 𝜆 selects few features, small 𝜆 allows many features.

Sparsity and Regularization (with d=1)

Why doesn’t L2-Regularization set variables to 0?

• Consider an L2-regularized least squares problem with 1 feature:

• Let’s solve for the optimal ‘w’:

• So as λ gets bigger, ‘w’ converges to 0.
• However, for all finite λ ‘w’ will be non-zero unless yTx = 0 exactly.
– But it’s very unlikely that yTx will be exactly zero.

Why doesn’t L2-Regularization set variables to 0?

42

• Small 𝜆 Big 𝜆

• Solution further from zero Solution closer to zero
(but not exactly 0)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-0.8

0.8

1.6

2.4

3.2

4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-0.8

0.8

1.6

2.4

3.2

4

Why does L1-Regularization set things to 0?
• Consider an L1-regularized least squares problem with 1 feature:

• If (w = 0), then “left” limit and “right“ limit are given by:

• So which direction should “gradient descent” go in?

Why does L1-Regularization set things to 0?

44

• Small λ Big λ

• Solution nonzero Solution exactly zero
(minimum of left parabola is past origin, but right parabola is not) (minimum of both parabola are past the origin)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-0.8

0.8

1.6

2.4

3.2

4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-0.8

0.8

1.6

2.4

3.2

4

L2-regularization vs. L1-regularization
• So with 1 feature:
– L2-regularization only sets ‘w’ to 0 if yTx = 0.

• There is a only a single possible yTx value where the variable gets set to zero.
• And λ	has nothing to do with the sparsity.

– L1-regularization sets ‘w’ to 0 if |yTx| ≤ λ.
• There is a range of possible yTx values where the variable gets set to zero.
• And increasing λ	increases the sparsity since the range of yTx grows.

• Note that it’s important that the function is non-differentiable:
– Differentiable regularizers penalizing size would need yTx = 0 for sparsity.

L1-Loss vs. Huber Loss
• The same reasoning tells us the difference between the L1 *loss*

and the Huber loss. They are very similar in that they both grow
linearly far away from 0. So both are both robust but…
– With the L1 loss the model often passes exactly through some points.
– With Huber the model doesn’t necessarily pass through any points.

• Why? With L1-regularization we were causing the elements of ’w’
to be exactly 0. Analogously, with the L1-loss we cause the
elements of ‘r’ (the residual) to be exactly zero. But zero residual
for an example means you pass through that example exactly.

46

Non-Uniqueness of L1-Regularized Solution
• How can L1-regularized least squares solution not be unique?
– Isn’t it convex?

• Convexity implies that minimum value of f(w) is unique (if exists),
but there may be multiple ‘w’ values that achieve the minimum.

• Consider L1-regularized least squares with d=2, where feature 2 is a
copy of a feature 1. For a solution (w1,w2) we have:

• So we can get the same squared error with different w1 and w2 values
that have the same sum. Further, if neither w1 or w2 changes sign, then
|w1| + |w2| will be the same so the new w1 and w2 will be a solution.

Splines in 1D
• For 1D interpolation, alternative to polynomials/RBFs are splines:
– Use a polynomial in the region between each data point.
– Constrain some derivatives of the polynomials to yield a unique solution.

• Most common example is cubic spline:
– Use a degree-3 polynomial between each pair of points.
– Enforce that f’(x) and f’’(x) of polynomials agree at all point.
– “Natural” spline also enforces f’’(x) = 0 for smallest and largest x.

• Non-trivial fact: natural cubic splines are sum of:
– Y-intercept.
– Linear basis.
– RBFs with g(ε) = ε3.

• Different than Gaussian RBF because it increases with distance.

http://www.physics.arizona.edu/~restrepo/475A/Notes/sourcea-/node35.html

Splines in Higher Dimensions
• Splines generalize to higher dimensions if data lies on a grid.
– Many methods exist for grid-structured data (linear, cubic, splines, etc.).
– For more general (“scattered”) data, there isn’t a natural generalization.

• Common 2D “scattered” data interpolation is thin-plate splines:
– Based on curve made when bending sheets of metal.
– Corresponds to RBFs with g(ε) = ε2 log(ε).

• Natural splines and thin-plate splines: special cases of
“polyharmonic” splines:
– Less sensitive to parameters than Gaussian RBF.

http://step.polymtl.ca/~rv101/thinplates/

L2-Regularization vs. L1-Regularization
• L2-regularization conceptually restricts ‘w’ to a ball.

L2-Regularization vs. L1-Regularization
• L2-regularization conceptually restricts ‘w’ to a ball.

• L1-regularization restricts to the L1 “ball”:
– Solutions tend to be at corners where wj are zero.

Related Infinite Series video

https://www.youtube.com/watch?v=ineO1tIyPfM&t=596s

