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Admin

* Reading week is next week!

— No lectures
— Assignment 4 will be released on Friday (Feb 25). Due on March 11.



Last Time: L2-Regularization

* We discussed regularization:

— Adding a continuous penalty on the model complexity:
— _
Fla) = I =yl + 200, )12

— Best parameter A almost always leads to improved test error.

* L2-regularized least squares is also known as “ridge regression”.
e Can be solved as a linear system like least squares.

— Numerous other benefits:

e Solution is unique, less sensitive to data, gradient descent converges faster.



Parametric vs. Non-Parametric Transforms

 We’'ve been using linear models with polynomial bases:
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* But polynomials are not the only possible bases:
— Exponentials, logarithms, trigonometric functions, etc.
— The right basis will vastly improve performance.
— If we use the wrong basis, our accuracy is limited even with lots of data.

— But the right basis may not be obvious.



Parametric vs. Non-Parametric Transforms

 We’'ve been using linear models with polynomial bases:
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e Alternative is non-parametric bases:
— Size of basis (number of features) grows with ‘n’
— Model gets more complicated as you get more data.

— Can model complicated functions where you don’t know the right basis.
* With enough data.

— Classic example is “Gaussian RBFs” (“Gaussian” == “normal distribution”).



Gaussian RBFs: A Sum of “bumps”
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* Gaussian RBFs are universal approximators (on compact subets of RY)
— Enough bumps can approximate any continuous function to arbitrary precision.
— Achieve optimal test error as ‘n” goes to infinity.



Gaussian RBFs: A Sum of “Bumps”

* Polynomjal fit:
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Gaussian RBFs: A Sum of “Bumps”

* More-realistic version (green is regression line, red is each basis):
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Gaussian RBF Parameters

 Some obvious questions:

1. How many bumps should we use?
2. Where should the bumps be centere

d?
3. How high should the bumps go? MML
4. How wide should the bumps be?

* The usual answers:
1. We use ‘n” bumps (non-parametric basis).
2. Each bump is centered on one training example x.
3. Fitting regression weights ‘w’ gives us the heights (and signs).

4. The width is a hyper-parameter (narrow bumps == complicated model).



Gaussian RBFs: Formal Details

 What is a radial basis functions (RBFs)?

— A set of non-parametric bases that depend on distances to training points.
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Gaussian RBFs: Formal Details

 What is a radial basis functions (RBFs)?
— Most common choice of ‘g’ is Gaussian RBF:

(€)= er(-55)

* Variance o? is a hyper-parameter controlling “width”.
— This affects fundamental trade-off (set it using a validation set).

— Why don’t we have v 2mo in the above formula? bonus!

 If you don’t regularize it does not matter: -

— If ‘v’ is least squares solution with features z;, then (v/2ma)v is solution with features (1/v2mo)z.
— So you get the same predictions (least squares is invariant to scaling of features).
 If you regularize it “sort of” matters:

— It changes the effect of a fixed A.
— But the regularization path is the same, so if you search for the best A you get same predictions.




Gaussian RBFs: Formal Details

 What is a radial basis functions (RBFs)?

— The training and testing matrices when using RBFs:
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Gaussian RBFs: Pseudo-Code
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Non-Parametric Basis: RBFs

* Least squares with Gaussian RBFs for different o values:
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RBFs and Regularization
* Gaussian Radial basis functions (RBFs) predictions:

N _ I~ /I _ =Y, _ x - x1/2
o= wexp(le )+ mpenr (<P ) s wegp (<A )

— Flexible bases that can model any continuous function.

e Quick almost-proof: Z is square, almost always invertible, so least squares gives bonus!
Iv=2(2"2)172"y=27'7"7"y=y

— But with ‘n” data points RBFs have ‘n’ basis functions.

* How do we avoid overfitting with this huge number of features?

— We regularize ‘w’ and use validation error to choose ¢ and A.



RBFs, Regularization, and Validation

e A model that is hard to beat:

— RBF basis with L2-regularization and cross-validation to choose o and A.
— Flexible non-parametric basis, magic of regularization, and tuning for test error.
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e A model that is hard to beat:

RBF Basis (sigma = 2.000000)

RBFs, Regularization, and Validation

— RBF basis with L2-regularization and cross-validation to choose o and A.
— Flexible non-parametric basis, magic of regularization, and tuning for test error!
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Hyper-Parameter Optimization

In this setting we have 2 hyper-parameters (o and A).
More complicated models have even more hyper-parameters.

— This makes searching all values expensive (increases over-fitting risk).

Leads to the problem of hyper-parameter optimization.
— Try to efficiently find “best” hyper-parameters.

Simplest approaches:

— Exhaustive search: try all combinations among a fixed set of o and A values.
— Random search: try random values.



bonus,(
Hyper-Parameter Optimization

* Other common hyper-parameter optimization methods:

— Exhaustive search with pruning:
e Ifit “looks” like test error is getting worse as you decrease A, stop decreasing it.

— Coordinate search:

* Optimize one hyper-parameter at a time, keeping the others fixed.
* Repeatedly go through the hyper-parameters

— Stochastic local search:
* Generic global optimization methods (simulated annealing, genetic algorithms, etc.).

— Bayesian optimization (Mike’s PhD research topic):

* Use (e.g.) RBF regression to build model of how hyper-parameters affect validation error.
* Try the best guess based on the model.



(pause)



Previously: Search and Score

We talked about search and score for feature selection:

— Define a “score” and “search” for features with the best score.

Usual scores count the number of non-zeroes (“LO-norm”):
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But it’s hard to find the ‘w’” minimizing this objective.
We discussed forward selection, but requires fitting O(d?) models.



Previously: Search and Score

* What if we want to pick among millions or billions of variables?

e If ‘d"is large, forward selection is too slow:

— For least squares, need to fit O(d?) models. Imagine d = 10°6.

* The situation is worse if we aren’t using basic least squares:
— With regularization, for every lambda, we need to fit O(d?) models.



L1-Regularization

Instead of LO- or L2-norm, consider regularizing by the L1-norm:
FG)= L= )12 + Ml

Like L2-norm, it’s convex and improves our test error.
Like LO-norm, it encourages elements of ‘w’ to be exactly zero.

L1-regularization simultaneously regularizes and selects features.

— Very fast alternative to search and score.
— Sometimes called “LASSO” regularization.



L2-Regularization vs. L1-Regularization

 Regularization path of w, values as ‘A’ varies:
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e L1-Regularization sets values to exactly O (next slides explore why).



Regularizers and Sparsity

L1-regularization gives sparsity but L2-regularization doesn’t.
— But don’t they both shrink variables towards zero?

What is the penalty for setting w; = 0.00001?

LO-regularization: penalty of A.
— A constant penalty for any non-zero value.
— Encourages you to set w; exactly to zero, but otherwise doesn’t care if w; is small or not.

L2-regularization: penalty of A(0.00001)*2 = 0.0000000001A.
— The penalty gets smaller as you get closer to zero.
— The penalty asymptotically vanishes as w; approaches 0 (no incentive for “exact” zeroes).

L1-regularization: penalty of A|0.00001| = 0.00001A.
— The penalty stays is proportional to how far away w; is from zero.
— There is still something to be gained from making a tiny value exactly equal to 0.



Loss plus error usually minimized
at “corners” (sparse points)

Minimizer moved towards O, but
axis-independently



L2-Regularization vs. L1-Regularization

e L2-Regularization: e L1-Regularization:
— Insensitive to changes in data. — Insensitive to changes in data.
— Decreased variance: — Decreased variance:
* Lower test error. * Lower test error.
— Closed-form solution. — Requires iterative solver.
— Solution is unique. — Solution is not unique.
— All ‘w;" tend to be non-zero. — Many ‘w;" tend to be zero.
— Sample complexity (the number — Sample complexity: grows
of training examples needed to logarithmically in number of
learn “well”) grows linearly in irrelevant features.

irrelevant features. Paper on this result by Andrew Ng



http://www.andrewng.org/portfolio/feature-selection-l1-vs-l2-regularization-and-rotational-invariance/

L1-Regularization Applications

* Used to give super-resolution in imaging black holes.
— Sparsity arises in a particular basis.

_ 0-filling

initial image beam-convolved image super-resolution image

yas

pas pas pas

2 mas = 2000 pas 2 mas = 2000 pas

Figure 2. Simulated images of M87. From left to right, the initial model, the image with O-filling, and the
image with LASSO. Improvement of resolution in the LASSO image is significant.

Figure 3. Standard and LASSO images of M87 observed with VLBA at a wavelength of 7 mm. In the two
plots, exactly the same data are used. The angular resolution is better in the LASSO image, and the detailed
structure of the M87 jet can be traced in more detail.

* Another application:
— Use L1-regularization with Gaussian RBFs to reduce prediction time.



L1-loss vs. L1-regularization

 Don’t confuse the L1 loss with L1-regularization!

— L1-loss is robust to outlier data points.
* You can use this instead of removing outliers.

— L1-regularization is robust to irrelevant features.
e You can use this instead of removing features.

* And note that you can be robust to outliers and irrelevant features:
i(w) = (/Xw' \/“, - /A'/w//,
L, — loss L, rtownlarizer
 Can we smooth and use “Huber regularization”?
— Huber regularizer is still robust to irrelevant features.
— But it’s the non-smoothness that sets weights to exactly O. -



L*-Regularization

* LO-regularization (AIC, BIC, Mallow’s Cp, Adjusted R?, ANOVA):

— Adds penalty on the number of non-zeros to select features.
)= )(.,‘,—y//z + Yl
e L2-regularization (ridge regression):

— Adding penalty on the L2-norm of ‘W’ to decrease overfitting:
_ _ (2
Fluy= I =ylP+2y,)2
e L1-regularization (LASSO):

— Adding penalty on the L1-norm decreases overfitting and selects features:

Fl) = 10 =yl + A0



LO- vs. L1- vs. L2-Regularization

Sparse ‘w’ Speed Coding Effort Irrelevant
(Selects Features) Features

LO-Regularization Yes Slow Few lines Not Sensitive
L1-Regularization Yes* Fast* No 1 line* Not Sensitive
L2-Regularization No Fast Yes 1 line A bit sensitive

e L1-Regularization isn’t as sparse as LO-regularization.
— L1-regularization tends to give more false positives (selects too many).
— And it’s only “fast” and “1 line” with specialized solvers.

* “Elastic net” (L1- and L2-regularization) is sparse, fast, and unique
(under some conditions).

[https://www.stat.cmu.edu/~ryantibs/papers/lassounique.pdf]
e Using LO+L2 does not give a unique solution.



Summary

e Radial basis functions:

— Non-parametric bases that can model any function.

* L1-regularization:
— Simultaneous regularization and feature selection.

— Robust to having lots of irrelevant features.

* Next time: are we really going to use regression for classification?



bonu\S_(
Regularizers and Sparsity

L1-regularization gives sparsity but L2-regularization doesn’t.

— But don’t they both shrink variables to zero?

Consider problem where 3 vectors can get minimum training error:
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Without regularization, we could choose any of these 3.

— They all have same error, so regularization will “break tie”.

With LO-regularization, we would choose w?:
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Regularizers and Sparsity

* L1-regularization gives sparsity but L2-regularization doesn’t.
— But don’t they both shrink variables to zero?

e Consider problem where 3 vectors can get minimum training error:

o[5m] w9 we
* With L2-regularization, we would choose w?:
! 1= 162 <00 1P =02+ 0% I I7=9299% +¢07°
= |0000-0po4 = |000D = 1975 0065

* L2-regularization focuses on decreasing largest (makes w; similar).
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Regularizers and Sparsity

* L1-regularization gives sparsity but L2-regularization doesn’t.
— But don’t they both shrink variables to zero?

e Consider problem where 3 vectors can get minimum training error:

(00 r
21— (100 3_ (9999
ooz] W™ o w 0.62

* With L1-regularization, we would choose w?:

W 6=1004002 WUl =+  IGlh= 9999 +00;
~100.02 = '00 = 100. 0]

* L1-regularization focuses on decreasing all w; until they are O.
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Sparsity and Least Squares -
* Consider 1D least squares objective:
‘F(w): ‘;I'l g‘(w Xi= ‘/‘.7‘Z
* This is a convex 1D quadratic function of ‘w’ (i.e., a parabola):
$0v)
’ F)=0
wunimuMy
Ay happns
- iF 2yn=0
* This variable does not look relevant (minimum is close to 0). (bonug)

— But for finite ‘n’ the minimum is unlikely to be exactly zero.




bon U\S_(

Sparsity and LO-Regularization

* Consider 1D LO-regularized least squares objective:
2 L w0

ﬁ(w): ':I'z é‘,(w i ‘/">Z < w/o O if «w=0

* This is a convex 1D quadratic function but with a discontinuity at O: 7[\(».)

—® )
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e LO-regularized minimum is often exactly at the ‘discontinuity’ at O:
— Sets the feature to exactly O (does feature selection), but is non-convex.



Sparsity and L2-Regularization

 Consider 1D L2-regularized least squares objective:
| 2 2 2
‘F(W) 2 g' w X \/7 + 7

bon U\S_(

* This is a convex 1D quadratic function of ‘w’ (i.e., a parabola): £(-)

P

A
X

Ay mam

* L2-regularization moves it closer to zero, but not all the way to zero.
— It doesn’t do feature selection (“penalty goes to 0 as slope goes to 0”).—" F7=0

"L‘_‘Z n[:gy,*; =0
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Sparsity and L1-Regularization

* Consider 1D L1-regularized least squares objective:
=12 (- )2
‘F(w)v 1& w Xi= Y ‘f/}\)\/\/\

* This is a convex piecwise-quadratic function of ‘w’ with ‘kink’ at O: £)

\/ N minimam

e Ll-regularization tends to set variables to @@,CLN_O_(feature selectlon)
— Penalty on slope is 4 even if you are close to zero.

Hq S whe fx
— Big A selects few features, small A allows many features. ”W A y’

( loo/\vg)



Sparsity and Regularization (with d=1)
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Why doesn’t L2-Regularization set variables to 07"

 Consider an L2-regularized Igast squares problem with 1 feature:
{(w) = ;ﬁ: (wyx.~ y,'))" t :\’i—wl

* Let’s solve for the optimal ‘w’:

n n
A vl —_
-V‘(w): Z X (WX; '-y{) T q w a\n“‘“\e W( én Xio ¥ ,A> B ,-g xix
=1 ;(/7 ,“ “Z \/)'(,:/
A X
Sct eyml to O: 2 xAw — g X Yi A =/ Uy !

e W:HX”Z”;\
e So as A gets bigger, ‘W’ converges to 0.

* However, for all finite A ‘w’ will be non-zero unless y'x = 0 exactly.

— But it’s very unlikely that y™x will be exactly zero.
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Why doesn’t L2-Regularization set variables to 07"

. Smal
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Big A

e Solution further from zero

Solution closer to zero
(but not exactly 0)
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Why does L1-Regularization set things to 0?7~

* Consider an L1-regularized least squares problem with 1 feature:
L) = 5' é‘ (wx-,’y.-)z + A wl
e If (w=0), then “left” limit and “right” limit are given by:

F-(OT‘éxz (Ox;=y) = W(O)“_npix,'(ol’;‘yf)f-ﬂ
:':é X4, -~ :-%; Xi +;)

* So which direction should ‘ gradlent descent” go in?
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Why does L1-Regularization set things to 0?7~

Small A

\

Big A

\

\

fecd

\ /
08

Solution nonzero

(minimum of left parabola is past origin, but right parabola is not)

Solution exactly zero

(minimum of both parabola are past the origin)
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L2-regularization vs. L1-regularization

e So with 1 feature:

— L2-regularization only sets ‘w’ to 0 if y'x = 0.
* There is a only a single possible y'x value where the variable gets set to zero.
* And A has nothing to do with the sparsity.

— L1-regularization sets ‘w’ to O if |y™x| < A.
* There is a range of possible y'x values where the variable gets set to zero.
* And increasing A increases the sparsity since the range of y'x grows.

* Note that it’s important that the function is non-differentiable:

— Differentiable regularizers penalizing size would need y'x = O for sparsity.
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L1-Loss vs. Huber Loss

 The same reasoning tells us the difference between the L1 *loss*
and the Huber loss. They are very similar in that they both grow
linearly far away from 0. So both are both robust but...

— With the L1 loss the model often passes exactly through some points.
— With Huber the model doesn’t necessarily pass through any points.

 Why? With L1-regularization we were causing the elements of ‘'w’
to be exactly 0. Analogously, with the L1-loss we cause the
elements of ‘r’ (the residual) to be exactly zero. But zero residual
for an example means you pass through that example exactly.



bonus,‘
Non-Uniqueness of L1-Regularized Solution =

How can L1-regularized least squares solution not be unique?
— Isn’t it convex?

Convexity implies that minimum value of f(w) is unique (if exists),
but there may be multiple ‘w’ values that achieve the minimum.

Consider L1-regularized least squares with d=2, where feature 2 is a

copy of a feature 1. For a solution (w,,w,) we have:
N
y& = WXy FwyXy = W, %t w4y = (\vl"""’z >Xil

So we can get the same squared error with different w; and w, values
that have the same sum. Further, if neither w; or w, changes sign, then
lw,| + |w, | will be the same so the new w; and w, will be a solution.
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Splines in 1D

* For 1D interpolation, alternative to polynomials/RBFs are splines:

— Use a polynomial in the region between each data point.
— Constrain some derivatives of the polynomials to yield a unique solution.

* Most common example is cubic spline:
— Use a degree-3 polynomial between each pair of points.

— Enforce that f’(x) and f”’(x) of polynomials agree at all point.
— “Natural” spline also enforces f"’(x) = 0 for smallest and largest x.

Approximating f(x) = x sin(2x x + 1) using Natural cubic splines

* Non-trivial fact: natural cubic splines are sum of: —
— Y-intercept. ‘

— Linear basis.
— RBFs with g(e) = €3.
e Different than Gaussian RBF because it increases with distance.

= Cubic splins Approx.
= = Exact Function
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Splines in Higher Dimensions

* Splines generalize to higher dimensions if data lies on a grid.
— Many methods exist for grid-structured data (linear, cubic, splines, etc.).
— For more general (“scattered”) data, there isn’t a natural generalization.

e Common 2D “scattered” data interpolation is thin-plate splines:
— Based on curve made when bending sheets of metal.

— Corresponds to RBFs with g(e) = €2 log(¢).
3

* Natural splines and thin-plate splines: special cases of
“polyharmonic” splines: 2 y =
" . o
— Less sensitive to parameters than Gaussian RBF. _ge £7 'y




L2-Regularization vs. L1-Regularization
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L2-Regularization vs. L1-Regularization

| 2-regularization conceptually restricts ‘w’ to a ball.

Ioon U\S.‘
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@ Unconstrained Solution
¥ O L2-Regularized Solution

“1-. | @Unconstrained Solution

~.."| © L1-Regularized Solution |,

_1-regularization restricts to the L1 “ball”:
— Solutions tend to be at corners where w; are zero.

Related Infinite Series video



https://www.youtube.com/watch?v=ineO1tIyPfM&t=596s

