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Admin
• Midterm is Thursday, 6-7:30pm.

– On Canvas, take it anywhere

– 85 minutes inside that 90-minute block.

– Open book (/ notes / slides / anything on the internet / …)

– No communication with anyone (whether they’re in the class or not).

– Auditors, do not take the midterm.


• There will be …. :

– Multiple choice questions (choose one that satisfies the question) that might be 

conceptual or more technical/specific.

– Multiple answer questions (choose all that satisfy the question)

– Essay-like questions involving math. 
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• Last time we discussed feature selection:
– Choosing set of “relevant” features.

• Most common approach is search and score: 
– Define “score” and “search” for features with best score.

• But it’s hard to define the “score” and it’s hard to “search”.
– So we often use greedy methods like forward selection.

• Methods work okay on “toy” data, but are frustrating on real data.
– Different methods may return very different results.
– Defining whether a feature is “relevant” is complicated and ambiguous.
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My advice if you want the “relevant” variables.
• Try the association approach.
• Maybe try forward selection with different values of λ.
• Try out a few other feature selection methods (Lasso – Friday!).

• Discuss the results with the domain expert.
– They probably have an idea of why some variables might be relevant.

• Don’t be overconfident:
– These methods are probably not discovering how the world truly works.
– “The algorithm has found that these variables are helpful in predicting yi.”

• Then a warning that these models are not perfect at finding relevant variables.
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• Plotting location of bullet holes on planes returning from WW2:

• Where are the “relevant” parts of the plane to protect?
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Related: Survivorship Bias
• Plotting location of bullet holes on planes returning from WW2:

• Where are the “relevant” parts of the plane to protect?
– “Relevant” parts are actually where there are no bullets.

– Planes shot in other places did not come back (armor was needed).

https://en.wikipedia.org/wiki/Survivorship_bias



Related: Survivorship Bias
• Plotting location of bullet holes on planes returning from WW2:


• This is an example of “survivorship bias”:

– Data is not IID because you only sample the “survivors”.


– Causes havoc for feature selection, and ML methods in general.

https://en.wikipedia.org/wiki/Survivorship_bias
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• Plotting location of bullet holes on planes returning from WW2:

• People come to wrong conclusions due to survivor bias all the time.
– Article on “secrets of success”, focusing on traits of successful people.

https://en.wikipedia.org/wiki/Survivorship_bias
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Related: Survivorship Bias
• Plotting location of bullet holes on planes returning from WW2:

• People come to wrong conclusions due to survivor bias all the time.
– Article on “secrets of success”, focusing on traits of successful people.

• But ignoring the number of non-super-successful people with the same traits.

– Article hypothesizing about various topics (allergies, mental illness, etc.).
https://en.wikipedia.org/wiki/Survivorship_bias

https://www.boredpanda.com/survival-bias-modern-medical-conditions-rates-increase/
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“Feature” Selection vs. “Model” Selection?
• Model selection: “which model should I use?”
– KNN vs. decision tree, depth of decision tree, degree of polynomial basis.

• Feature selection: “which features should I use?”
– Using feature 10 or not, using xi

2 as part of basis.

• These two tasks are highly-related:
– It’s a different “model” if we add xi

2 to linear regression.

– But the xi
2 term is just a “feature” that could be “selected” or not.

– Usually, “feature selection” means choosing from some “original” features.
• You could say that “feature” selection is a special case of “model” selection.

Model Selection

Feature 
Selection
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Feature selection as a case of model selection
• Linear regression can overfit with large ‘d’.

– Even though it’s “just” a hyper-plane.

• Consider using d=n, with completely random features.

– With high probability, you will be able to get a training error of 0.


– But the features were random, this is completely overfitting.


• You could view “number of features” as a hyper-parameter.

– Model gets more complex as you add more features.



(pause)
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http://www.cs.ubc.ca/~arnaud/stat535/slides5_revised.pdf



Recall: Polynomial Degree and Training vs. Testing

• We’ve said that complicated models tend to overfit more.


• But what if we need a complicated model?
http://www.cs.ubc.ca/~arnaud/stat535/slides5_revised.pdf
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Controlling Complexity

• Usually “true” mapping from xi to yi is complex.

– Might need high-degree polynomial.

– Might need to combine many features, and don’t know “relevant” ones.

• But complex models can overfit.
• So what do we do???

• Our main tools:
– Model averaging: average over multiple models to decrease variance.

– Regularization: add a penalty on the complexity of the model.
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Would you rather?
• Consider the following dataset and 3 linear regression models:

• What if you are forced to choose between red and green?
– And assume they have the same training error.

• You should pick green.
– Since slope is smaller, small change in xi has a smaller change in prediction yi.

• Green line’s predictions are less sensitive to having ‘w’ exactly right.

– Since green ‘w’ is less sensitive to data, test error might be lower. 
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L2-Regularization
• Standard regularization strategy is L2-regularization:

• Intuition: large slopes wj tend to lead to overfitting.

• Objective balances getting low error vs. having small slopes ‘wj’.
– “You can increase the training error if it makes ‘w’ much smaller.”
– Nearly-always reduces overfitting.

– Regularization parameter λ > 0 controls “strength” of regularization.
• Large λ puts large penalty on slopes.
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• In terms of fundamental trade-off:
– Regularization increases training error.
– Regularization decreases approximation error.

• How should you choose λ?

– Theory: as ‘n’ grows λ should usually be Θ( n)√
• different in some cases (e.g. bigger if ‘d’ grows with ‘n’, smaller if there’s no noise)



L2-Regularization
• Standard regularization strategy is L2-regularization:

• In terms of fundamental trade-off:
– Regularization increases training error.
– Regularization decreases approximation error.

• How should you choose λ?

– Theory: as ‘n’ grows λ should usually be Θ( n)√
• different in some cases (e.g. bigger if ‘d’ grows with ‘n’, smaller if there’s no noise)

– Practice: optimize validation set or cross-validation error.
• This almost always decreases the test error.



L2-Regularization “Shrinking” Example
• Solution to a “least squares with L2-regularization” for different λ:

λ w1 w2 w3 w4 w5

0 -1.88 1.29 -2.63 1.78 -0.63

1 -1.88 1.28 -2.62 1.78 -0.64

4 -1.87 1.28 -2.59 1.77 -0.66

16 -1.84 1.27 -2.50 1.73 -0.73

64 -1.74 1.23 -2.22 1.59 -0.90

256 -1.43 1.08 -1.70 1.18 -1.05

1024 -0.87 0.73 -1.03 0.57 -0.81

4096 -0.35 0.31 -0.42 0.18 -0.36

||Xw – y||2 ||w||2

285.64 15.68

285.64 15.62

285.64 15.43

285.71 14.76

286.47 12.77

292.60 8.60

321.29 3.33

374.27 0.56
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L2-Regularization “Shrinking” Example
• Solution to a “least squares with L2-regularization” for different λ:

• We get least squares with λ = 0.
– But we can achieve similar training error with smaller ||w||.

• ||X w – y|| increases with λ, and ||w|| decreases with λ.
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L2-Regularization “Shrinking” Example
• Solution to a “least squares with L2-regularization” for different λ:

• We get least squares with λ = 0.
– But we can achieve similar training error with smaller ||w||.

• ||X w – y|| increases with λ, and ||w|| decreases with λ.
– Though individual wj can increase or decrease with lambda.
– Because we use the L2-norm, the large ones decrease the most.

λ w1 w2 w3 w4 w5

0 -1.88 1.29 -2.63 1.78 -0.63

1 -1.88 1.28 -2.62 1.78 -0.64

4 -1.87 1.28 -2.59 1.77 -0.66

16 -1.84 1.27 -2.50 1.73 -0.73

64 -1.74 1.23 -2.22 1.59 -0.90

256 -1.43 1.08 -1.70 1.18 -1.05

1024 -0.87 0.73 -1.03 0.57 -0.81

4096 -0.35 0.31 -0.42 0.18 -0.36

||Xw – y||2 ||w||2

285.64 15.68

285.64 15.62

285.64 15.43

285.71 14.76

286.47 12.77

292.60 8.60

321.29 3.33

374.27 0.56



Regularization Path

• Regularization path is a plot of the optimal weights ‘wj’ as ‘λ’ varies:


• Starts with least squares with λ= 0, and wj converge to 0 as λ grows.
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L2-regularization and the normal equations
• When using L2-regularized squared error, we can solve for ∇ f(w) = 0.
• Loss before: 
• Loss after:

• Gradient before: 
• Gradient after:

• Linear system before: 
• Linear system after: 
• But unlike XTX, the matrix (XTX + λI) is always invertible:
– Multiply by its inverse for unique solution:

21
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Gradient Descent for L2-Regularized Least Squares

• The L2-regularized least squares objective and gradient:

• Gradient descent iterations for L2-regularized least squares:

• Cost of gradient descent iteration is still O(nd).
– Can show number of iterations decreases as λ increases (not obvious).
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Why use L2-Regularization?
• The 340 Team™ says: “always use regularization”.
– “Almost always decreases test error” should already convince you.

• But here are 6 more reasons:
1. Solution ‘w’ is unique.
2. XTX does not need to be invertible (no collinearity issues).
3. Less sensitive to changes in X or y.
4. Gradient descent converges faster (bigger λ means fewer iterations).
5. Stein’s paradox: if d ≥ 3, ‘shrinking’ moves us closer to ‘true’ w.
6. Worst case: just set λ small and get the same performance.



(pause)
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0 250 0 1
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0 0 0 0.5
2 250 150 0
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Features with Different Scales
• Consider continuous features with different scales:

• Should we convert to some standard ‘unit’?
– It doesn’t matter for decision trees or naïve Bayes.

• They only look at one feature at a time.

– It doesn’t matter for least squares:
• wj*(100 mL) gives the same model as wj*(0.1 L) with a different wj.
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• Consider continuous features with different scales:

• Should we convert to some standard ‘unit’?
– It matters for k-nearest neighbours:

• “Distance” will be affected more by large features than small features.
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Features with Different Scales
• Consider continuous features with different scales:

• Should we convert to some standard ‘unit’?
– It matters for k-nearest neighbours:

• “Distance” will be affected more by large features than small features.

– It matters for regularized least squares:
• Penalizing (wj)2 means different things if features ‘j’ are on different scales.

Egg (#) Milk (mL) Fish (g) Pasta (cups)
0 250 0 1
1 250 200 1
0 0 0 0.5
2 250 150 0
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Standardizing Features
• It is common to standardize continuous features:

– For each feature:
1. Compute mean and standard deviation:

2. Subtract mean and divide by standard deviation (“z-score”)

– Now changes in ‘wj’ have similar effect for any feature ‘j’.

• How should we standardize test data?
– Wrong approach: use mean and standard deviation of test data.
– Training and test mean and standard deviation might be very different.
– Right approach: use mean and standard deviation of training data.
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Standardizing Features
• It is common to standardize continuous features:

– For each feature:
1. Compute mean and standard deviation:

2. Subtract mean and divide by standard deviation (“z-score”)

– Now changes in ‘wj’ have similar effect for any feature ‘j’.

• If we’re doing 10-fold cross-validation:
– Compute µj and σj based on the 9 training folds (e.g., average over 9/10s of data).

– Standardize the remaining (“validation”) fold with this “training” µj and σj.

– Re-standardize for different folds.
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Standardizing Target

• In regression, we sometimes standardize the targets yi.

– Puts targets on the same standard scale as standardized features:

• With standardized target, setting w = 0 predicts average yi:

– High regularization makes us predict closer to the average value.

• Again, make sure you standardize test data with the training stats.

• Other common transformations of yi are logarithm/trig functions:

– Makes sense for geometric/exponential processes. 
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Summary
• Regularization:

– Adding a penalty on model complexity.

• L2-regularization: penalty on L2-norm of regression weights ‘w’.

– Almost always improves test error.

• Standardizing features:

– For some models it makes sense to have features on the same scale.

• Next time: learning with an exponential number of irrelevant 
features.
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Regularizing the y-Intercept?
• Should we regularize the y-intercept?
• No! Why encourage it to be closer to zero? (It could be anywhere.)
– You should be allowed to shift function up/down globally.

• Yes! It makes the solution unique and it easier to compute ‘w’.

• Compromise: regularize by a smaller amount than other variables.

• With a constant z feature: replace 1 by sqrt(λ/λ0).

– Don’t standardize it!
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• In principle, we can use any features xi that we think are relevant.


• This makes it tempting to use time as a feature, and predict future.

https://gravityandlevity.wordpress.com/2009/04/22/the-fastest-possible-mi

https://overthehillsports.wordpress.com/tag/hicham-el-guerrouj/le/

https://overthehillsports.files.wordpress.com/2015/07/guerrouj1.jpg
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Predicting 100m times 400 years in the future?

https://plus.maths.org/content/sites/plus.maths.org/files/articles/2011/usain/graph2.gif

http://www.washingtonpost.com/blogs/london-2012-olympics/wp/2012/08/08/report-usain-bolt-invited-to-tryout-for-manchester-united/
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Interpolation vs Extrapolation
• Interpolation is task of predicting “between the data points”.

– Regression models are good at this if you have enough data and function is continuous.
• Extrapolation is task of prediction outside the range of the data points.

– Without assumptions, regression models can be embarrassingly bad at this.

• If you run the 100m regression models backwards in time:
– They predict that humans used to be really really slow!

• If you run the 100m regression models forwards in time:
– They might eventually predict arbitrarily-small 100m times.
– The linear model actually predicts negative times in the future.

• These time-traveling races in 2060 should be pretty exciting!

• Some discussion here:
– http://callingbullshit.org/case_studies/case_study_gender_gap_running.htmlhttps://www.smbc-comics.com/comic/rise-of-the-machines

http://callingbullshit.org/case_studies/case_study_gender_gap_running.html
http://callingbullshit.org/case_studies/case_study_gender_gap_running.html
https://www.smbc-comics.com/comic/rise-of-the-machines
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Discussion: Climate Models
• So should we all become global warming skeptics?
• If we average over models that overfit in independent ways, we expect the test 

error to be lower, so this gives more confidence:

– We should be skeptical of individual models, but agreeing predictions made by models 
with different data/assumptions are more likely be true.

• All the near-future predictions agree, so they are likely to be accurate.
– And it’s probably reasonable to assume fairly continuous change (no big “jumps”).

• Variance is higher further into future, so predictions are less reliable.
– Relying more on assumptions and less on data.

https://en.wikipedia.org/wiki/Global_warming
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Index Funds: Ensemble Extrapolation for Investing

• Want to do extrapolation when investing money.
– What will this be worth in the future?

• Index funds can be viewed as an ensemble method for investing.
– For example, buy stock in top 500 companies proportional to value.
– Tries to follow average price increase/decrease.

– This simple investing strategy outperforms most fund managers.
http://fibydesign.com/005-introduction-to-index-investing-stocks-index-funds-vtsax/
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• Occam’s razor is a problem-solving principle:
– “Among competing hypotheses, the one with the 

fewest assumptions should be selected.”
– Suggests we should select linear model.

• Fundamental trade-off:
– If same training error, pick model less likely to overfit.
– Formal version of Occam’s problem-solving principle.
– Also suggests we should select linear model.

• No free lunch theorem:
– There exists possible datasets where you should select 

the green model.


