CPSC 340: Machine Learning and Data Mining

Robust Regression Spring 2022 (2021W2)

Admin

- Midterm
 - Thu Feb 17 from 6:00-7:30pm
 - You will have 85 minutes in that 90-minute window
 - Covers assignments 1-3; lectures L1 to L15 (be taught on Monday 14th)
- We released practice exams (on Piazza).

Last Time: Gradient Descent and Convexity

- We introduced gradient descent:
 - Uses sequence of iterations of the form:

 $w^{t+1} = w^t - d^t \nabla f(w^t)$

- Converges to a stationary point where ∇ f(w) = 0 under weak conditions.
 - Will be a global minimum if the function is convex.
- We discussed ways to show a function is convex:
 - Second derivative is non-negative (1D functions).
 - Closed under addition, multiplication by non-negative constant, maximization (max of convex functions is a convex fuction).
 - Any [squared-]norm is convex.
 - Composition of convex function with linear function is convex.

Example: Convexity of Linear Regression (Easy Way)

• Consider linear regression objective with squared error:

$$f(w) = ||\chi_w - \gamma||^2$$

• We can use that this is a convex function composed with linear:

Let
$$h(w) = Xw - y$$
, which is a linear function (if inputs nontruits
Let $g(r) = ||r||^2$, which is convex because it's a synared
norm.
Then $f(w) = g(h(w))$, which is convex because it's
a convex function composed with
a linear function

Convexity in Higher Dimensions

- Twice-differentiable 'd'-variable function is convex iff:
 Eigenvalues of Hessian ∇² f(w) are non-negative for all 'w'.
- True for least squares where $\nabla^2 f(w) = X^T X$ for all 'w'. - See bonus slides for why $X^T X$ has non-negative eigenvalues.

Unfortunately, sometimes it is hard to show convexity this way.
 Usually easier to just use some of the rules as we did on the last slide.

(pause)

• Height vs. weight of NBA players:

• Consider least squares problem with outliers in 'y':

This is what least squares will actually do. X_X×××××× X

Least squares is very sensitive to outliers. •

• Squaring error shrinks small errors, and magnifies large errors:

• Outliers (large error) influence 'w' much more than other points.

• Squaring error shrinks small errors, and magnifies large errors:

linc

Robust Regression

- Robust regression objectives focus less on large errors (outliers).
- For example, use absolute error instead of squared error:

$$f(w) = \sum_{i=1}^{n} |w^{T}x_{i} - y_{i}|$$

- Now decreasing 'small' and 'large' errors is equally important.
- Instead of minimizing L2-norm, minimizes L1-norm of residuals:

Least squares: Lea

$$f(w) = \frac{1}{2} ||X_w - y||^2 \qquad f(w) = \frac{1}{2} ||X_w - y||^2$$

Least absolute error:
$$f(n) = ||Xw - y||_1$$

• Absolute error is more robust to outliers:

Regression with the L1-Norm

- Unfortunately, minimizing the absolute error is harder.
 - We don't have "normal equations" for minimizing the L1-norm.
 - Absolute value is non-differentiable at 0.

- Generally, harder to minimize non-smooth than smooth functions.
 - Unlike smooth functions, the gradient may not get smaller near a minimizer.
- To apply gradient descent, we'll use a smooth approximation.

Smooth Approximations to the L1-Norm

 There are differentiable approximations to absolute value. – Common example is **Huber loss**: $f(w) = \sum_{i=1}^{n} h(w^{T}x_{i} - y_{i})$ $h(r_i) = \begin{cases} \frac{1}{2}r_i^2 & \text{for } |r_i| \leq \varepsilon \\ \varepsilon(|r_i| - \frac{1}{2}\varepsilon) & \text{otherwise} \end{cases}$

absolute

away

Squared error near zcro.

from zero.

- Note that 'h' is differentiable: h'(ϵ) = ϵ and h'(- ϵ) = - ϵ .
- This 'f' is convex but setting $\nabla f(x) = 0$ does not give a linear system.
 - But we can minimize the Huber loss using gradient descent.

Very Robust Regression

• Non-convex errors can be very robust:

Not influenced by outlier groups.

Х L, error might do something like this. Very robust" errors should pick this line.

Very Robust Regression

- Non-convex errors can be very robust:
 - Not influenced by outlier groups.
 - But non-convex, so finding global minimum is hard.
 - Absolute value is "most robust" convex loss function.

L error might do something like this.

this local minimum.

-> But, "very robust" might pick

Very robust" errors should pick this line.

Motivation for Modeling Outliers

- What if the "outlier" is the only non-male person in your dataset?
 - Do you want to be robust to the outlier?
 - Will the model work for everyone if it has good average case performance?

"Brittle" Regression

- What if you really care about getting the outliers right?
 - You want to minimize size of worst error across examples.
 - For example, if in worst case the plane can crash.
- In this case you could use something like the infinity-norm:

 Very sensitive to outliers ("brittle"), but minimizes worst (highest) errors.

Log-Sum-Exp Function

- As with the L_1 -norm, the L_{∞} -norm is convex but non-smooth:
 - We can again use a smooth approximation and fit it with gradient descent.
- Convex and smooth approximation to max function is **log-sum-exp** function:

$$\max_{i} \{z_i\} \approx \log(\{z_i > p(z_i)\})$$

- We'll use this several times in the course.
- Notation reminder: when I write "log" I always mean "natural" logarithm: log(e) = 1.
- Intuition behind log-sum-exp:
 - $-\sum_{i} \exp(z_i) \approx \max_{i} \exp(z_i)$, as largest element is magnified exponentially (if no ties).
 - And notice that $log(exp(z_i)) = z_i$.

Log-Sum-Exp Function Examples

• Log-sum-exp function as smooth approximation to max:

$$\max_{i} \{z_i\} \approx \log(\{z_ex_p(z_i)\})$$

• If there aren't "close" values, it's really close to the max.

• Comparison of max{0,w} and smooth log(exp(0) + exp(w)):

Recap of Part 3

Linear Models, Least Squares

- Focus of Part 3 is linear models:
- Regression:
 - Target y_i is numerical, testing ($\hat{y}_i == y_i$) doesn't make sense.

• Squared error: $\frac{1}{2}\sum_{i=1}^{n} (w^{T}x_{i} - y_{i})^{2}$ or $\frac{1}{2} ||Xw - y||^{2}$ exactly pass through any point.

Can find optimal 'w' by solving "normal equations".

Change of Basis, Gradient Descent

- Change of basis: replaces features x_i with non-linear transforms z_i:
 - Add a bias variable (feature that is always one).
 - Polynomial basis.
 - Other basis functions (logarithms, trigonometric functions, etc.).

- For large 'd' we often use gradient descent:
 - Iterations only cost O(nd).
 - Converges to a critical point of a smooth function.
 - For convex functions, it finds a global optimum.

Error Functions, Smoothing

• Error functions:

- Squared error is sensitive to outliers.
- Absolute (L₁) error and Huber error are more robust to outliers.
- Brittle (L_{∞}) error is more sensitive to outliers.
- L_1 and L_{∞} error functions are convex but non-differentiable:
 - Finding 'w' minimizing these errors is harder than squared error.
- We can approximate these with differentiable functions:
 - L_1 can be approximated with Huber.
 - L_{∞} can be approximated with log-sum-exp.
- With these smooth (convex) approximations, we can find global optimum with gradient descent.

Finding the "True" Model

- What if our goal is find the "true" model?
 - We believe that y_i really is a polynomial function of x_i .
 - We want to find the degree of the polynomial 'p'.
- Should we choose the 'p' with the lowest training error?
 - No, this will pick a 'p' that is way too large.

(training error always decreases as you increase 'p')

Finding the "True" Model

- What if our goal is find the "true" model?
 - We believe that y_i really is a polynomial function of x_i .
 - We want to find the degree of the polynomial 'p'.
- Should we choose the 'p' with the lowest validation error?
 - This will also often choose a 'p' that is too large.
 - Even if true model has p=2, this is a special case of a degree-3 polynomial.
 - If 'p' is too big then we overfit, but might still get a lower validation error.

Complexity Penalties

- There are a lot of "scores" people use to find the "true" model.
- Basic idea behind them: put a penalty on the model complexity. • Want to fit the data and have a simple model.
- For example, minimize training error plus the degree of polynomial.

Let
$$Z_p = \begin{bmatrix} 1 & x_1 & (x_1)^3 & \cdots & (x_1)^p \\ 1 & x_2 & (x_2)^2 & \cdots & (x_2)^p \\ 1 & x_3 & (x_3)^2 & \cdots & (x_3)^p \\ 1 & x_n & (x_h)^2 & \cdots & (x_n)^r \end{bmatrix}$$

Find 'p' that minimizes:
Score(p) = $\frac{1}{2} ||Z_p v - y||^2 + p$
train error for degree of
best 'v' with this basis. polynomial

If we use p=4, use training error plus 4 as error.

• If two 'p' values have similar error, this prefers the smaller 'p'.

Choosing Degree of Polynomial Basis

• How can we optimize this score?

$$Score(p) = \frac{1}{2}||Z_{p}v - y||^{2} + p$$

- Form Z_0 , solve for 'v', compute score(0) = $\frac{1}{2} ||Z_0v y||^2 + 0$.
- Form Z_1 , solve for 'v', compute score(1) = $\frac{1}{2} ||Z_1v y||^2 + 1$.
- Form Z_2 , solve for 'v', compute score(2) = $\frac{1}{2} ||Z_2v y||^2 + 2$.
- Form Z_3 , solve for 'v', compute score(3) = $\frac{1}{2} ||Z_3v y||^2 + 3$.
- Choose the degree with the lowest score.
 - "You need to decrease training error by at least 1 to increase degree by 1."

Information Criteria

• There are many scores, usually with the form:

$$score(p) = \frac{1}{2} || Z_{p} v - y ||^{2} + \lambda K$$

- The value 'k' is the "number of estimated parameters" ("degrees of freedom").
 - For polynomial basis, we have k = p + 1.
- The parameter $\lambda > 0$ controls how strong we penalize complexity.
 - "You need to decrease the training error by least λ to increase 'k' by 1".
- Using $(\lambda = 1)$ is called Akaike information criterion (AIC).
- Other choices of λ (not necessarily integer) give other criteria:
 - Mallow's C_p.
 - Adjusted R².
 - ANOVA-based model selection.

Naming something after yourself without being gauche

Choosing Degree of Polynomial Basis

• How can we optimize this score in terms of 'p'?

Score
$$(p) = \frac{1}{2} || Z_{p} v - y ||^{2} + \lambda K$$

- Form Z₀, solve for 'v', compute score(0) = $\frac{1}{2} ||Z_0 v y||^2 + \lambda$.
- Form Z₁, solve for 'v', compute score(1) = $\frac{1}{2} ||Z_1v y||^2 + 2\lambda$.
- Form Z₂, solve for 'v', compute score(2) = $\frac{1}{2} ||Z_2v y||^2 + 3\lambda$.
- Form Z₃, solve for 'v', compute score(3) = $\frac{1}{2} ||Z_3v y||^2 + 4\lambda$.
- So we need to improve by "at least λ " to justify increasing degree.
 - If λ is big, we'll choose a small degree. If λ is small, we'll choose a large degree.

Summary

- Outliers in 'y' can cause problem for least squares.
- Robust regression using L1-norm is less sensitive to outliers.
- Brittle regression using Linf-norm is more sensitive to outliers.
- Smooth approximations:
 - Let us apply gradient descent to non-smooth functions.
 - Huber loss is a smooth approximation to absolute value.
 - Log-Sum-Exp is a smooth approximation to maximum.
- Information criteria are scores that penalize number of parameters.
 - When we want to find the "true" model.
- Next time:
 - Can we find the "true" features?

Random Sample Consensus (RANSAC)

- In computer vision, a widely-used generic framework for robust fitting is random sample consensus (RANSAC).
- This is designed for the scenario where:
 - You have a large number of outliers.
 - Majority of points are "inliers": it's really easy to get low error on them.

Random Sample Consensus (RANSAC)

- RANSAC:
 - Sample a small number of training examples.
 - Minimum number needed to fit the model.
 - For linear regression with 1 feature, just 2 examples.
 - Fit the model based on the samples.
 - Fit a line to these 2 points.
 - With 'd' features, you'll need 'd+1' examples.
 - Test how many points are fit well based on the model.
 - Repeat until we find a model that fits at least the expected number of "inliers".
- You might then re-fit based on the estimated "inliers".

Log-Sum-Exp for Brittle Regression

• To use log-sum-exp for brittle regression:

$$\begin{aligned} \|X_{w} - y\|_{\infty} &= \max_{i} \sum_{j} \|w^{T}x_{i} - y_{i}\|_{s}^{2} \\ &= \max_{i} \sum_{j} \max_{i} \sum_{j} w^{T}x_{i} - y_{i}y_{j} - w^{T}x_{i}S_{s}^{2} \\ &= \|Gg(\sum_{i=1}^{n} exp(w^{T}x_{i} - y_{i}) + \sum_{i=1}^{n} exp(y_{i} - w^{T}x_{i})) \\ &= \|Gg(\sum_{i=1}^{n} exp(w^{T}x_{i} - y_{i}) + \sum_{i=1}^{n} exp(y_{i} - w^{T}x_{i})) \\ &= \|Gg(\sum_{i=1}^{n} exp(w^{T}x_{i} - y_{i}) + \sum_{i=1}^{n} exp(y_{i} - w^{T}x_{i})) \\ &= \|Gg(\sum_{i=1}^{n} exp(w^{T}x_{i} - y_{i}) + \sum_{i=1}^{n} exp(y_{i} - w^{T}x_{i})) \\ &= \|Gg(\sum_{i=1}^{n} exp(w^{T}x_{i} - y_{i}) + \sum_{i=1}^{n} exp(y_{i} - w^{T}x_{i})) \\ &= \|Gg(\sum_{i=1}^{n} exp(w^{T}x_{i} - y_{i}) + \sum_{i=1}^{n} exp(y_{i} - w^{T}x_{i})) \\ &= \|Gg(\sum_{i=1}^{n} exp(w^{T}x_{i} - y_{i}) + \sum_{i=1}^{n} exp(y_{i} - w^{T}x_{i})) \\ &= \|Gg(\sum_{i=1}^{n} exp(w^{T}x_{i} - y_{i}) + \sum_{i=1}^{n} exp(y_{i} - w^{T}x_{i})) \\ &= \|Gg(\sum_{i=1}^{n} exp(w^{T}x_{i} - y_{i}) + \sum_{i=1}^{n} exp(y_{i} - w^{T}x_{i})) \\ &= \|Gg(\sum_{i=1}^{n} exp(w^{T}x_{i} - y_{i}) + \sum_{i=1}^{n} exp(y_{i} - w^{T}x_{i})) \\ &= \|Gg(\sum_{i=1}^{n} exp(w^{T}x_{i} - y_{i}) + \sum_{i=1}^{n} exp(y_{i} - w^{T}x_{i})) \\ &= \|Gg(\sum_{i=1}^{n} exp(w^{T}x_{i} - y_{i}) + \sum_{i=1}^{n} exp(y_{i} - w^{T}x_{i})) \\ &= \|Gg(\sum_{i=1}^{n} exp(w^{T}x_{i} - y_{i}) + \sum_{i=1}^{n} exp(y_{i} - w^{T}x_{i}) + \sum_{i=1}^{n} exp(y_{i} - w^{T}x_{i}) \\ &= \|Gg(\sum_{i=1}^{n} exp(w^{T}x_{i} - y_{i}) + \sum_{i=1}^{n} exp(y_{i} - w^{T}x_{i}) + \sum_{i=1}^{$$

Log-Sum-Exp Numerical Trick

- Numerical problem with log-sum-exp is that $exp(z_i)$ might overflow.
 - For example, exp(100) has more than 40 digits.
- Implementation 'trick': $L_e \uparrow \beta = Max \frac{3}{2}Z_i \frac{3}{2}$

$$log(\xi exp(z_i)) = log(\xi exp(z_i - \beta + \beta))$$

= log(\xi exp(z_i - \beta)exp(\beta))
= log(exp(\beta) \xi exp(z_i - \beta))
= log(exp(\beta)) + log(\xi exp(z_i - \beta)))
= \beta + log(\xi exp(z_i - \beta)) = \leq l \frac{so no}{Overflow}

Gradient Descent for Non-Smooth?

- "You are unlikely to land on a non-smooth point, so gradient descent should work for non-smooth problems?"
 - Consider just trying to minimize the absolute value function:

- Norm(gradient) is constant when not at 0, so unless you are lucky enough to hit exactly 0, you will just bounce back and forth forever.
- We didn't have this problem for smooth functions, since the gradient gets smaller as you approach a minimizer.
- You could fix this problem by making the step-size slowly go to zero, but you
 need to do this carefully to make it work, and the algorithm gets much slower.

Gradient Descent for Non-Smooth?

 Counter-example from Bertsekas' "Nonlinear Programming" where gradient descent for a non-smooth convex problem does not converge to a minimum.

Figure 6.3.8. Contours and steepest ascent path for the function of Exercise 6.3.8.

Example: Convexity of Linear Regression (Hard Way)

• Consider linear regression objective with squared error:

$$f(w) = ||\chi_w - y||^2$$

- Twice-differentiable 'f' is convex if $\nabla^2 f(x)$ has eigenvalues ≥ 0 . - This is equivalent to saying $v^T \nabla^2 f(x) v \geq 0$ for all vectors v.
- The Hessian for least squares is $\nabla^2 f(x) = X^T X$.

See notes on Gradients and Hessians of quadratics on webpage.

• We have:
$$\sqrt[V]{\nabla^2 f(u)} = \sqrt[\tilde{\lambda}]{\chi} = (\chi_v)^{\tilde{\lambda}} = ||\chi_v|^2 \ge 0$$
 (because norms are ≥ 0)

So it's convey

bonusl