
CPSC 340:
Machine Learning and Data Mining

Nonlinear Regression
Spring 2022 (2021W2)



Admin
• a1 graded
• A2 due today
• Transition to in person learning
– Monday (Feb 7th) still on Zoom
– Starting Wednesday onward, in person

• Recordings will be via panopto and in a different place (listed on syllabus on github)
• Office hours online (unless announced otherwise)
• Tutorials: some online, some offline (check

https://piazza.com/class/ky0odbs6f7424n?cid=178)

– Check piazza before going to class in case of last minute changes (e.g. 
professor has symptoms)

https://piazza.com/class/ky0odbs6f7424n?cid=178


Midterm

• Midterm 
– Feb 17, 6:00-7:30pm
– Fully remote
– Open book
– No communication with others allowed
– Will be on Canvas



Last Time: Linear Regression
• We discussed linear models:

• “Multiply feature xij by weight wj, 
add them to get yi”.

• We discussed squared error function:

• Interactive demo: 
– http://setosa.io/ev/ordinary-least-squares-regression

http://www.bloomberg.com/news/articles/2013-01-10/the-dunbar-number-from-the-guru-of-social-networks

http://setosa.io/ev/ordinary-least-squares-regression


Matrix/Norm Notation (MEMORIZE/STUDY THIS)

• To solve the d-dimensional least squares, we use matrix notation:
– We use ‘w’ as a “d times 1” vector containing weight ‘wj’ in position ‘j’.
– We use ‘y’ as an “n times 1” vector containing target ‘yi’ in position ‘i’.
– We use ‘xi’ as a “d times 1” vector containing features ‘j’ of example ‘i’.

• We’re now going to be careful to make sure these are column vectors.

– So ‘X’ is a matrix with xiT in row ‘i’.



Matrix/Norm Notation (MEMORIZE/STUDY THIS)

• To solve the d-dimensional least squares, we use matrix notation:
– Our prediction for example ‘i’ is given by the scalar wTxi.
– Our predictions for all ‘i’ (n times 1 vector) is the matrix-vector product Xw.



Matrix/Norm Notation (MEMORIZE/STUDY THIS)

• To solve the d-dimensional least squares, we use matrix notation:
– Our prediction for example ‘i’ is given by the scalar wTxi.
– Our predictions for all ‘i’ (n times 1 vector) is the matrix-vector product Xw.
– Residual vector ‘r’ gives difference between yi and predictions (n times 1).
– Least squares can be written as the squared L2-norm of the residual.



Back to Deriving Least Squares for d > 2…
• We can write vector of predictions !𝑦𝑖 as a matrix-vector product:

• And we can write linear least squares in matrix notation as:

• We’ll use this notation to derive d-dimensional least squares ‘w’.
– By setting the gradient 𝛻 𝑓 𝑤 equal to the zero vector and solving for ‘w’.



Digression: Matrix Algebra Review
• Quick review of linear algebra operations we’ll use:
– If ‘a’ and ‘b’ are vectors, and ‘A’ and ‘B’ are matrices then:



Linear and Quadratic Gradients
• From these rules we have (see post-lecture slide for steps):

• How do we compute gradient?



Linear and Quadratic Gradients
• We’ve written as a d-dimensional quadratic:

• Gradient is given by:

• Using definitions of ‘A’ and ‘b’:

-



Normal Equations
• Set gradient equal to zero to find the “critical” points:

• We now move terms not involving ‘w’ to the other side:

• This is a set of ‘d’ linear equations called the “normal equations”.
– This a linear system like “Ax = b” from Math 152.

• You can use Gaussian elimination to solve for ‘w’.

– In Python, you solve linear systems in 1 line using numpy.linalg.solve.



Incorrect Solutions to Least Squares Problem



Least Squares Cost
• Cost of solving “normal equations” XTXw = XTy?
• Forming XTy vector costs O(nd).
– It has ‘d’ elements, and each is an inner product between ‘n’ numbers.

• Forming matrix XTX costs O(nd2).
– It has d2 elements, and each is an inner product between ‘n’ numbers.

• Solving a d x d system of equations costs O(d3).
– Cost of Gaussian elimination on a d-variable linear system.
– Other standard methods have the same cost.

• Overall cost is O(nd2 + d3).
– Which term dominates depends on ‘n’ and ‘d’.



Least Squares Issues
• Issues with least squares model:
– Solution might not be unique.
– It is sensitive to outliers.
– It always uses all features.
– Data might so big we can’t store XTX.

• Or you can’t afford the O(nd2 + d3) cost.

– It might predict outside range of yi values.
– It assumes a linear relationship between xi and yi.



Non-Uniqueness of Least Squares Solution
• Why isn’t solution unique?
– Imagine having two features that are identical for all examples.
– I can increase weight on one feature, and decrease it on the other,

without changing predictions.

– Thus, if (w1,w2) is a solution then (w1+w2, 0) is another solution.
– This is special case of features being “collinear”:

• One feature is a linear function of the others.

• But, any ‘w’ where ∇	f(w) = 0 is a global minimizer of ‘f’.
– This is due to convexity of ‘f’, which we’ll discuss later.



(pause)



Motivation: Non-Linear Progressions in Athletics

• Are top athletes going faster, higher, and farther?

http://www.at-a-lanta.nl/weia/Progressie.html
https://en.wikipedia.org/wiki/Usain_Bolt
http://www.britannica.com/biography/Florence-Griffith-Joyner



Adapting Counting/Distance-Based Methods
• We can adapt our classification methods to perform regression:

http://www.at-a-lanta.nl/weia/Progressie.html



Adapting Counting/Distance-Based Methods
• We can adapt our classification methods to perform regression:
– Regression tree: tree with mean value or linear regression at leaves.

http://www.at-a-lanta.nl/weia/Progressie.html



Adapting Counting/Distance-Based Methods
• We can adapt our classification methods to perform regression:
– Regression tree: tree with mean value or linear regression at leaves.
– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.

• Take CPSC 440.

https://en.wikipedia.org/wiki/Multivariate_normal_distribution



Adapting Counting/Distance-Based Methods
• We can adapt our classification methods to perform regression:
– Regression tree: tree with mean value or linear regression at leaves.
– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.
– Non-parametric models: 

• KNN regression:
– Find ‘k’ nearest neighbours of xi.
– Return the mean of the corresponding yi.

http://scikit-learn.org/stable/modules/neighbors.html



Adapting Counting/Distance-Based Methods
• We can adapt our classification methods to perform regression:
– Regression tree: tree with mean value or linear regression at leaves.
– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.
– Non-parametric models: 

• KNN regression.
• Could be weighted by distance.

– Close points ‘j’ get more “weight” wij.

http://scikit-learn.org/stable/modules/neighbors.html



Adapting Counting/Distance-Based Methods
• We can adapt our classification methods to perform regression:
– Regression tree: tree with mean value or linear regression at leaves.
– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.
– Non-parametric models: 

• KNN regression.
• Could be weighted by distance.
• ‘Nadaraya-Waston’: weight all yi by distance to xi.

http://www.mathworks.com/matlabcentral/fileexchange/35316-kernel-regression-with-variable-window-width/content/ksr_vw.m



Adapting Counting/Distance-Based Methods
• We can adapt our classification methods to perform regression:
– Regression tree: tree with mean value or linear regression at leaves.
– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.
– Non-parametric models: 

• KNN regression.
• Could be weighted by distance.
• ‘Nadaraya-Waston’: weight all yi by distance to xi.
• ‘Locally linear regression’: for each xi, fit a linear model weighted by distance.

(Better than KNN and NW at boundaries.)

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd423.htm



Adapting Counting/Distance-Based Methods
• We can adapt our classification methods to perform regression:
– Regression tree: tree with mean value or linear regression at leaves.
– Probabilistic models: fit p(xi | yi) and p(yi) with Gaussian or other model.
– Non-parametric models: 

• KNN regression.
• Could be weighted by distance.
• ‘Nadaraya-Waston’: weight all yi by distance to xi.
• ‘Locally linear regression’: for each xi, fit a linear model weighted by distance.

(Better than KNN and NW at boundaries.)

– Ensemble methods:
• Can improve performance by averaging predictions across regression models.



Adapting Counting/Distance-Based Methods
• We can adapt our classification methods to perform regression.

• Applications:
– Regression forests for fluid simulation:

• https://www.youtube.com/watch?v=kGB7Wd9CudA
– KNN for image completion:

• http://graphics.cs.cmu.edu/projects/scene-completion
• Combined with “graph cuts” and “Poisson blending”.
• See also “PatchMatch”: https://vimeo.com/5024379

– KNN regression for “voice photoshop”:
• https://www.youtube.com/watch?v=I3l4XLZ59iw
• Combined with “dynamic time warping” and “Poisson blending”.

• But we’ll focus on linear models with non-linear transforms.
– These are the building blocks for more advanced methods.

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd423.htm

https://www.youtube.com/watch?v=kGB7Wd9CudA
http://graphics.cs.cmu.edu/projects/scene-completion
https://vimeo.com/5024379
https://www.youtube.com/watch?v=I3l4XLZ59iw


Why don’t we have a y-intercept?
– Linear model is $𝑦i = wxi instead of $𝑦i = wxi + w0 with y-intercept w0.
– Without an intercept, if xi = 0 then we must predict $𝑦i = 0.



Why don’t we have a y-intercept?
– Linear model is $𝑦i = wxi instead of $𝑦i = wxi + w0 with y-intercept w0.
– Without an intercept, if xi = 0 then we must predict $𝑦i = 0.



Adding a Bias Variable
• Simple trick to add a y-intercept (“bias”) variable:

– Make a new matrix “Z” with an extra feature that is always “1”.

• Now use “Z” as your features in linear regression.
– We’ll use ‘v’ instead of ‘w’ as regression weights when we use features ‘Z’.

• So we can have a non-zero y-intercept by changing features.
– This means we can ignore the y-intercept in our derivations, which is cleaner.



Motivation: Limitations of Linear Models
• On many datasets, yi is not a linear function of xi.

• Can we use least square to fit non-linear models?



Non-Linear Feature Transforms
• Can we use linear least squares to fit a quadratic model?

• You can do this by changing the features (change of basis):

• Fit new parameters ‘v’ under “change of basis”: solve ZTZv = ZTy.
• It’s a linear function of w, but a quadratic function of xi.



Non-Linear Feature Transforms



General Polynomial Features (d=1)
• We can have a polynomial of degree ‘p’ by using these features:

• There are polynomial basis functions that are numerically nicer:
– E.g., Lagrange polynomials (see CPSC 303).



Summary
• Matrix notation for expressing least squares problem.
• Normal equations: solution of least squares as a linear system.
– Solve (XTX)w = (XTy).

• Solution might not be unique because of collinearity.
– But any solution is optimal because of “convexity”.

• Non-linear transforms:
– Allow us to model non-linear relationships with linear models.



Linear Least Squares: Expansion Step



Vector View of Least Squares
• We showed that least squares minimizes:

• The ½ and the squaring don’t change solution, so equivalent to:

• From this viewpoint, least square minimizes Euclidean distance 
between vector of labels ‘y’ and vector of predictions X w.



Bonus Slide: Householder(-ish) Notation
• Househoulder notation: set of (fairly-logical) conventions for math.



Bonus Slide: Householder(-ish) Notation
• Househoulder notation: set of (fairly-logical) conventions for math:



When does least squares have a unique solution?
• We said that least squares solution is not unique if we have repeated 

columns.
• But there are other ways it could be non-unique:
– One column is a scaled version of another column.
– One column could be the sum of 2 other columns.
– One column could be three times one column minus four times another.

• Least squares solution is unique if and only if all columns of X are 
“linearly independent”.
– No column can be written as a “linear combination” of the others.
– Many equivalent conditions (see Strang’s linear algebra book):

• X has “full column rank”, XTX is invertible, XTX has non-zero eigenvalues, det(XTX) > 0.
– Note that we cannot have independent columns if d > n.


