-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathDyna-Q.kt
56 lines (54 loc) · 1.85 KB
/
Dyna-Q.kt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
package lab.mars.rl.algo.dyna
import lab.mars.rl.algo.V_from_Q
import lab.mars.rl.algo.`ε-greedy (tie broken randomly)`
import lab.mars.rl.model.emptyPossibleSet
import lab.mars.rl.model.impl.mdp.*
import lab.mars.rl.model.isNotTerminal
import lab.mars.rl.model.log
import lab.mars.rl.util.buf.DefaultBuf
import lab.mars.rl.util.collection.cnsetOf
import lab.mars.rl.util.log.debug
import lab.mars.rl.util.math.max
import lab.mars.rl.util.tuples.tuple2
import lab.mars.rl.util.tuples.tuple3
@Suppress("NAME_SHADOWING")
fun IndexedMDP.DynaQ(
α: (IndexedState, IndexedAction) -> Double,
ε: Double,
n: Int,
episodes: Int,
stepListener: (StateValueFunction, IndexedState) -> Unit = { _, _ -> },
episodeListener: (StateValueFunction) -> Unit = {}): OptimalSolution {
val π = IndexedPolicy(QFunc { 0.0 })
val Q = QFunc { 0.0 }
val cachedSA = DefaultBuf.new<tuple2<IndexedState, IndexedAction>>(Q.size)
val Model = QFunc { emptyPossibleSet }
val V = VFunc { 0.0 }
val result = tuple3(π, V, Q)
for (episode in 1..episodes) {
log.debug { "$episode/$episodes" }
var step = 0
var s = started()
while (s.isNotTerminal) {
V_from_Q(states, result)
stepListener(V, s)
step++
`ε-greedy (tie broken randomly)`(s, Q, π, ε)
val a = π(s)
val (s_next, reward) = a.sample()
Q[s, a] += α(s, a) * (reward + γ * max(s_next.actions, 0.0) { Q[s_next, it] } - Q[s, a])
if (Model[s, a].isEmpty())
cachedSA.append(tuple2(s, a))
Model[s, a] = cnsetOf(IndexedPossible(s_next, reward, 1.0))
repeat(n) {
val (s, a) = cachedSA.rand()
val (s_next, reward) = Model[s, a].rand()
Q[s, a] += α(s, a) * (reward + γ * max(s_next.actions, 0.0) { Q[s_next, it] } - Q[s, a])
}
s = s_next
}
episodeListener(V)
log.debug { "steps=$step" }
}
return result
}