forked from BrotherHwan/shopping_category_classification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPreprocessing.py
72 lines (62 loc) · 1.86 KB
/
Preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from konlpy.tag import Okt
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from sklearn.preprocessing import LabelEncoder
from tensorflow.keras.utils import to_categorical
import pickle
df = pd.read_csv('./crawling_data/crawling_data_last.csv')
print(df.head())
df.info()
X = df['titles']
Y = df['category']
label_encoder = LabelEncoder()
labeled_y = label_encoder.fit_transform(Y)
print(labeled_y[:3])
label = label_encoder.classes_
print(label)
with open('./models/label_encoder.pickle', 'wb') as f:
pickle.dump(label_encoder, f)
onehot_y = to_categorical(labeled_y)
print(onehot_y[:3])
print(X[1:5])
okt = Okt()
temp = []
for i in range(len(X)):
X[i] = okt.morphs(X[i], stem=True)
if i % 1000:
print(i)
# print(X[:5])
stopwords = pd.read_csv('./stopwords.csv', index_col=0)
for j in range(len(X)):
words = []
for i in range(len(X[j])):
if len(X[j][i]) > 1:
if X[j][i] not in list(stopwords['stopword']):
words.append(X[j][i])
X[j] = ' '.join(words)
# print(X[:5])
token = Tokenizer()
token.fit_on_texts(X)
tokened_x = token.texts_to_sequences(X)
wordsize = len(token.word_index) + 1
# print(tokened_x)
print(wordsize)
with open('./models/news_token.pickle', 'wb') as f:
pickle.dump(token, f)
max = 0
for i in range(len(tokened_x)):
if max < len(tokened_x[i]):
max = len(tokened_x[i])
print(max)
x_pad = pad_sequences(tokened_x, max)
print(x_pad)
X_train, X_test, Y_train, Y_test = train_test_split(
x_pad, onehot_y, test_size=0.2)
print(X_train.shape, Y_train.shape)
print(X_test.shape, Y_test.shape)
xy = X_train, X_test, Y_train, Y_test
xy = np.array(xy, dtype=object)
np.save('./news_data_max_{}_wordsize_{}'.format(max, wordsize), xy)