forked from BrotherHwan/shopping_category_classification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPredict.py
80 lines (64 loc) · 2.14 KB
/
Predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from konlpy.tag import Okt
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from sklearn.preprocessing import LabelEncoder
from tensorflow.keras.utils import to_categorical
import pickle
from tensorflow.keras.models import load_model
df = pd.read_csv('./crawling_data/crawling_data_last.csv')
print(df.head())
df.info()
X = df['titles']
Y = df['category']
with open('./models/label_encoder.pickle', 'rb') as f:
label_encoder = pickle.load(f)
label = label_encoder.classes_
print(label)
okt = Okt()
for i in range(len(X)):
X[i] = okt.morphs(X[i], stem=True)
stopwords = pd.read_csv('./stopwords.csv', index_col=0)
for j in range(len(X)):
words = []
for i in range(len(X[j])):
if len(X[j][i]) > 1:
if X[j][i] not in list(stopwords['stopword']):
words.append(X[j][i])
X[j] = ' '.join(words)
# print(X[:5])
with open('./models/news_token.pickle', 'rb') as f:
# with open('./models/news_token.pickle', 'rb') as f:
token = pickle.load(f)
tokened_x = token.texts_to_sequences(X)
for i in range(len(tokened_x)):
if len(tokened_x[i]) > 27:
tokened_x[i] = tokened_x[i][:27]
print(tokened_x)
x_pad = pad_sequences(tokened_x, 27)
# model = load_model('./models/last_classification_model_0.969865620136261.h5')
model = load_model('./models/coupang_classification_model_0.9312499761581421.h5')
# model = load_model('./models/11st_classification_model_0.932539701461792.h5')
preds = model.predict(x_pad)
predicts = []
for pred in preds:
most = label[np.argmax(pred)]
# pred[np.argmax(pred)] = 0
second = label[np.argmax(pred)]
predicts.append([most, second])
df['predict'] = predicts
print(df)
df['OX'] = 0
for i in range(len(df)):
if df.loc[i, 'category'] in df.loc[i, 'predict']:
df.loc[i, 'OX'] = 'O'
else :
df.loc[i, 'OX'] = 'X'
print(df.loc[i])
# print(df.loc[i,'category'])
# print(df.loc[i,'predict'])
#evaluate
print(df['OX'].value_counts())
print(df['OX'].value_counts()/len(df))