-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2004F.cpp
165 lines (143 loc) · 4.2 KB
/
2004F.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
// Created at: Tue Aug 20 11:21:11 CST 2024
/*
Problem Summary:
Given an array `a` of `n` integers. For all subarrays of `a`, calculate the sum
of the minimum number of operations needed to make each subarray a palindrome.
Key Insight:
Transforming an array to a palindrome can be seen in dynamic programming terms,
where we gradually bridge the elements from both ends till the middle,
incrementing the count of operations for each transformation.
Step-by-Step Plan:
1. Define a DP table `dp` where `dp[l][r]` represents the minimum operations
needed to convert the subarray `a[l..r]` into a palindrome.
2. Fill the DP table using a nested loop where we consider each length of the
subarray from 1 to `n`.
3. Calculate the sum of all `dp[l][r]` for all subarrays in the given array.
4. Use the math property of counting subarrays to iterate through all subarrays
efficiently.
Implementation:
*/
#include <bits/stdc++.h>
using namespace std;
using i64 = long long;
#ifdef DBG
#include "debug.h"
#else
#define dbg(...)
#define dbg_export(...)
#endif
int n;
vector<int> a;
void reset_globals()
{
n = 0;
a.clear();
}
uint64_t random_address()
{
char *p = new char;
delete p;
return uint64_t(p);
}
#include <ext/pb_ds/assoc_container.hpp>
using namespace __gnu_pbds;
struct safe_hash
{
static unsigned hash32(unsigned x)
{
// https://groups.google.com/g/prng/c/VFjdFmbMgZI
x += 0x9e3779b9;
x = (x ^ (x >> 16)) * 0x85ebca6b;
x = (x ^ (x >> 13)) * 0xc2b2ae35;
return x ^ (x >> 16);
}
static uint64_t splitmix64(uint64_t x)
{
// http://xorshift.di.unimi.it/splitmix64.c
x += 0x9e3779b97f4a7c15;
x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
return x ^ (x >> 31);
}
template <typename T> uint64_t operator()(T x) const
{
static const uint64_t FIXED_RANDOM =
splitmix64(chrono::steady_clock::now().time_since_epoch().count() *
(random_address() | 1));
if constexpr (sizeof(x) <= 4)
return hash32(unsigned(x ^ FIXED_RANDOM));
else
return splitmix64(x ^ FIXED_RANDOM);
}
};
struct custom_hash
{
static uint64_t splitmix64(uint64_t x)
{
// http://xorshift.di.unimi.it/splitmix64.c
x += 0x9e3779b97f4a7c15;
x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
return x ^ (x >> 31);
}
size_t operator()(uint64_t x) const
{
static const uint64_t FIXED_RANDOM =
chrono::steady_clock::now().time_since_epoch().count();
return splitmix64(x + FIXED_RANDOM);
}
};
i64 solve()
{
i64 ret = 0;
vector<int> pre(n + 2);
for (int i = 1; i <= n + 1; i++)
pre[i] = pre[i - 1] + a[i - 1];
gp_hash_table<int, tuple<int, int, int>, custom_hash> dp;
for (int len = 1; len <= n; len++)
for (int i = 1; i + len - 1 <= n; i++) {
int j = i + len - 1;
int hash = pre[i] + pre[j + 1];
int ans = -1;
auto iter = dp.find(hash);
if (iter == dp.end()) {
if (hash % 2 == 0 &&
binary_search(pre.begin() + i + 1, pre.begin() + j + 1,
hash / 2)) {
ans = len - 2;
} else {
ans = len - 1;
}
} else {
auto [l, r, prev_ans] = iter->second;
int clen = (l - i) + (j - r);
ans = prev_ans + clen - 2;
}
dbg(i, j, ans, hash);
dp[hash] = {i, j, ans};
ret += ans;
}
return ret;
}
int main()
{
#ifndef DBG
ios::sync_with_stdio(false);
cin.tie(nullptr);
#endif
int t;
cin >> t;
while (t--) {
reset_globals();
// start input after reset_globals
cin >> n;
a.resize(n + 1);
for (int i = 1; i <= n; ++i)
cin >> a[i];
auto ans = solve();
cout << ans << endl;
}
return 0;
}
// Time Complexity: The DP approach will work in O(n^3) per test case because of
// filling the DP table and then summing the results.