forked from CVI-SZU/Linly
-
Notifications
You must be signed in to change notification settings - Fork 0
/
generate_chatllama.py
114 lines (85 loc) · 4.15 KB
/
generate_chatllama.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
"""
This script provides an exmaple to wrap TencentPretrain for generation.
Given the beginning of a text, language model generates the rest.
"""
import sys
import os
import argparse
import torch
import torch.nn.functional as F
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.append(tencentpretrain_dir)
from tencentpretrain.embeddings import *
from tencentpretrain.encoders import *
from tencentpretrain.targets import *
from tencentpretrain.utils.constants import *
from tencentpretrain.utils import *
from tencentpretrain.utils.config import load_hyperparam
from tencentpretrain.model_loader import load_model
from tencentpretrain.opts import infer_opts, tokenizer_opts
class GenerateLm(torch.nn.Module):
def __init__(self, args):
super(GenerateLm, self).__init__()
self.embedding = Embedding(args)
for embedding_name in args.embedding:
tmp_emb = str2embedding[embedding_name](args, len(args.tokenizer.vocab))
self.embedding.update(tmp_emb, embedding_name)
self.encoder = str2encoder[args.encoder](args)
self.target = Target()
self.target.update(LmTarget(args, len(args.tokenizer.vocab)), "lm")
def forward(self, src, seg):
emb = self.embedding(src, seg)
output = self.encoder(emb, seg)
output = self.target.lm.output_layer(output)
return output
def top_k_top_p_filtering(logits, top_k, top_p):
top_k = min(top_k, logits.size(-1)) # Safety check
if top_k > 0:
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = -float("Inf")
if top_p > 0.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold
sorted_indices_to_remove = cumulative_probs > top_p
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices[sorted_indices_to_remove]
logits[indices_to_remove] = -float("Inf")
return logits
if __name__ == '__main__':
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
infer_opts(parser)
parser.add_argument("--top_k", type=int, default=70)
parser.add_argument("--top_p", type=float, default=0)
parser.add_argument("--temperature", type=float, default=1.0)
tokenizer_opts(parser)
args = parser.parse_args()
args.target = "lm"
args.batch_size = 1
args = load_hyperparam(args)
args.tokenizer = str2tokenizer[args.tokenizer](args)
model = GenerateLm(args)
model = load_model(model, args.load_model_path)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
model.eval()
with open(args.test_path, mode="r", encoding="utf-8") as f:
line = ''.join(f.readlines())
src = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(line))
seg = [1] * len(src)
beginning_length = len(src)
if len(src) > args.seq_length:
src = src[:args.seq_length]
seg = seg[:args.seq_length]
src_tensor, seg_tensor = torch.LongTensor([src]).to(device), torch.LongTensor([seg]).to(device)
for i in range(args.seq_length - beginning_length):
output = model(src_tensor, seg_tensor)
next_token_logits = output[0][-1] / args.temperature
filtered_logits = top_k_top_p_filtering(next_token_logits, args.top_k, args.top_p)
next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1)
src_tensor = torch.cat([src_tensor, next_token.view(1, 1)], dim=1)
seg_tensor = torch.cat([seg_tensor, torch.tensor([[1]]).to(device)], dim=1)
print(args.tokenizer.sp_model.decode([token_id.item() for token_id in src_tensor[0]]))