forked from AlbertoPaz/Dan-ABSA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
memnet.py
58 lines (49 loc) · 2.5 KB
/
memnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# -*- coding: utf-8 -*-
# file: memnet.py
# author: songyouwei <[email protected]>
# Copyright (C) 2018. All Rights Reserved.
from layers.attention import Attention
import torch
import torch.nn as nn
from layers.squeeze_embedding import SqueezeEmbedding
class MemNet(nn.Module):
def locationed_memory(self, memory, memory_len, left_len, aspect_len):
# here we just simply calculate the location vector in Model2's manner
'''
Updated to calculate location as the absolute diference between context word and aspect
'''
for i in range(memory.size(0)):
for idx in range(memory_len[i]):
aspect_start = left_len[i] - aspect_len[i]
if idx < aspect_start: l = aspect_start.item() - idx # l: absolute distance to the aspect
else: l = idx +1 - aspect_start.item()
memory[i][idx] *= (1-float(l)/int(memory_len[i]))
return memory
def __init__(self, embedding_matrix, opt):
super(MemNet, self).__init__()
self.opt = opt
self.embed = nn.Embedding.from_pretrained(torch.tensor(embedding_matrix, dtype=torch.float))
self.squeeze_embedding = SqueezeEmbedding(batch_first=True)
self.attention = Attention(opt.embed_dim, score_function='mlp')
self.x_linear = nn.Linear(opt.embed_dim, opt.embed_dim)
self.dense = nn.Linear(opt.embed_dim, opt.polarities_dim)
def forward(self, inputs):
text_raw_without_aspect_indices, aspect_indices, left_with_aspect_indices = inputs[0], inputs[1], inputs[2]
left_len = torch.sum(left_with_aspect_indices != 0, dim = -1)
memory_len = torch.sum(text_raw_without_aspect_indices != 0, dim=-1)
aspect_len = torch.sum(aspect_indices != 0, dim=-1)
nonzeros_aspect = torch.tensor(aspect_len, dtype=torch.float).to(self.opt.device)
memory = self.embed(text_raw_without_aspect_indices)
memory = self.squeeze_embedding(memory, memory_len)
# memory = self.locationed_memory(memory, memory_len, left_len, aspect_len)
aspect = self.embed(aspect_indices)
aspect = torch.sum(aspect, dim=1)
aspect = torch.div(aspect, nonzeros_aspect.view(nonzeros_aspect.size(0), 1))
x = aspect.unsqueeze(dim=1)
for _ in range(self.opt.hops):
x = self.x_linear(x)
out_at = self.attention(memory, x)
x = out_at + x
x = x.view(x.size(0), -1)
out = self.dense(x)
return out