forked from AlbertoPaz/Dan-ABSA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
base_c.py
83 lines (69 loc) · 3.51 KB
/
base_c.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# -*- coding: utf-8 -*-
# file: base_c.py
# author: albertopaz <[email protected]>
# Copyright (C) 2018. All Rights Reserved.
from layers.attention import Attention
import torch
import torch.nn as nn
import torch.nn.functional as F
from layers.squeeze_embedding import SqueezeEmbedding
class BaseC(nn.Module):
'''
Position attention based memory module
'''
def __init__(self, embedding_matrix, opt):
super(BaseC, self).__init__()
self.opt = opt
self.embed = nn.Embedding.from_pretrained(torch.tensor(embedding_matrix, dtype=torch.float))
self.squeeze_embedding = SqueezeEmbedding(batch_first=True)
self.attention = Attention(opt.embed_dim, score_function='mlp')
self.m_linear = nn.Linear(opt.embed_dim, opt.embed_dim, bias = False)
self.x_linear = nn.Linear(opt.embed_dim, opt.embed_dim, bias = False)
self.s_linear = nn.Linear(opt.embed_dim, opt.embed_dim, bias = False)
self.mlp = nn.Linear(opt.embed_dim, opt.embed_dim) # W4
self.dense = nn.Linear(opt.embed_dim, opt.polarities_dim) # W5
def locationed_memory(self, memory, memory_len, left_len, aspect_len):
# based on the absolute distance to the first border word of the aspect
for i in range(memory.size(0)):
for idx in range(memory_len[i]):
aspect_start = left_len[i] - aspect_len[i]
aspect_end = left_len[i]
if idx < aspect_start: l = aspect_start.item() - idx
elif idx <= aspect_end: l = 0
else: l = idx - aspect_end.item()
memory[i][idx] *= (1-float(l)/int(memory_len[i]))
return memory
def forward(self, inputs):
# inputs
text_raw_indices, aspect_indices, left_with_aspect_indices = inputs[0], inputs[1], inputs[2]
memory_len = torch.sum(text_raw_indices != 0, dim = -1)
aspect_len = torch.sum(aspect_indices != 0, dim = -1)
left_len = torch.sum(left_with_aspect_indices != 0, dim = -1)
# aspect representation
nonzeros_aspect = torch.tensor(aspect_len, dtype=torch.float).to(self.opt.device)
aspect = self.embed(aspect_indices)
aspect = torch.sum(aspect, dim=1)
aspect = torch.div(aspect, nonzeros_aspect.view(nonzeros_aspect.size(0), 1))
x = aspect.unsqueeze(dim=1)
# sentence representation
nonzeros_memory = torch.tensor(memory_len, dtype=torch.float).to(self.opt.device)
memory = self.embed(text_raw_indices)
v_s = torch.sum(memory, dim = 1)
v_s = torch.div(v_s, nonzeros_memory.view(nonzeros_memory.size(0),1))
v_s = v_s.unsqueeze(dim=1)
# memory module
memory = self.squeeze_embedding(memory, memory_len)
# position attention module
memory = self.locationed_memory(memory, memory_len, left_len, aspect_len)
# content attention module
for _ in range(self.opt.hops):
x = self.x_linear(x)
s = self.s_linear(v_s)
v_ts = self.attention(memory, x) #### TO DO : IMPLEMENT THE RIGHT ATTENTION MECHANISM FwNN3
# classifier
v_ns = v_ts + v_s # embedd the sentence
v_ns = v_ns.view(v_ns.size(0), -1)
v_ms = F.tanh(self.mlp(v_ns))
out = self.dense(v_ms)
out = F.softmax(out, dim=-1)
return out